Division of Epidemiology of Microbial Disease, Yale School of Public Health, Yale University, New Haven, CT, USA.
J Invertebr Pathol. 2013 Mar;112 Suppl(0):S32-9. doi: 10.1016/j.jip.2012.03.028. Epub 2012 Apr 19.
Tsetse flies have a highly regulated and defined microbial fauna made of 3 bacterial symbionts (obligate Wigglesworthia glossinidia, commensal Sodalis glossinidius and parasitic Wolbachia pipientis) in addition to a DNA virus (Glossina pallidipes Salivary gland Hypertrophy Virus, GpSGHV). It has been possible to rear flies in the absence of either Wigglesworthia or in totally aposymbiotic state by dietary supplementation of tsetse's bloodmeal. In the absence of Wigglesworthia, tsetse females are sterile, and adult progeny are immune compromised. The functional contributions for Sodalist are less known, while Wolbachia cause reproductive manupulations known as cytoplasmic incompatibility (CI). High GpSGHV virus titers result in reduced fecundity and lifespan, and have compromised efforts to colonize flies in the insectary for large rearing purposes. Here we investigated the within community effects on the density regulation of the individual microbiome partners in tsetse lines with different symbiotic compositions. We show that absence of Wigglesworthia results in loss of Sodalis in subsequent generations possibly due to nutritional dependancies between the symbiotic partners. While an initial decrease in Wolbachia and GpSGHV levels are also noted in the absence of Wigglesworthia, these infections eventually reach homeostatic levels indicating adaptations to the new host immune environment or nutritional ecology. Absence of all bacterial symbionts also results in an initial reduction of viral titers, which recover in the second generation. Our findings suggest that in addition to the host immune system, interdependencies between symbiotic partners result in a highly tuned density regulation for tsetse's microbiome.
采采蝇体内有一个高度调控和明确的微生物区系,由 3 种细菌共生体(必需的威氏血巴尔通体、共生的索达利司 glossinidius 和寄生的沃尔巴克氏体 pipientis)以及一种 DNA 病毒(舌蝇唾液腺增生病毒,GpSGHV)组成。通过饮食补充采采蝇的血餐,可以在没有威氏血巴尔通体或完全无共生体的情况下饲养采采蝇。在没有威氏血巴尔通体的情况下,雌性采采蝇不育,成年后代免疫力受损。索达利司的功能贡献知之甚少,而沃尔巴克氏体则导致细胞质不兼容(CI)等生殖操纵。高 GpSGHV 病毒滴度导致繁殖力下降和寿命缩短,并影响了为大规模饲养目的而在昆虫饲养室中饲养采采蝇的努力。在这里,我们研究了不同共生体组成的采采蝇系中个体微生物组伙伴的密度调节的群落内效应。我们表明,威氏血巴尔通体的缺失会导致随后几代中索达利司的缺失,可能是由于共生体之间存在营养依赖。虽然在威氏血巴尔通体缺失时,沃尔巴克氏体和 GpSGHV 的水平也会最初下降,但这些感染最终会达到稳定水平,表明它们适应了新的宿主免疫环境或营养生态。所有细菌共生体的缺失也会导致病毒滴度的最初降低,这种降低会在第二代恢复。我们的研究结果表明,除了宿主免疫系统外,共生体之间的相互依存关系也导致了采采蝇微生物组的高度精确的密度调节。