Suppr超能文献

群体间相互作用对采采蝇肠道微生物组和 GpSGHV 密度的调控。

Intercommunity effects on microbiome and GpSGHV density regulation in tsetse flies.

机构信息

Division of Epidemiology of Microbial Disease, Yale School of Public Health, Yale University, New Haven, CT, USA.

出版信息

J Invertebr Pathol. 2013 Mar;112 Suppl(0):S32-9. doi: 10.1016/j.jip.2012.03.028. Epub 2012 Apr 19.

Abstract

Tsetse flies have a highly regulated and defined microbial fauna made of 3 bacterial symbionts (obligate Wigglesworthia glossinidia, commensal Sodalis glossinidius and parasitic Wolbachia pipientis) in addition to a DNA virus (Glossina pallidipes Salivary gland Hypertrophy Virus, GpSGHV). It has been possible to rear flies in the absence of either Wigglesworthia or in totally aposymbiotic state by dietary supplementation of tsetse's bloodmeal. In the absence of Wigglesworthia, tsetse females are sterile, and adult progeny are immune compromised. The functional contributions for Sodalist are less known, while Wolbachia cause reproductive manupulations known as cytoplasmic incompatibility (CI). High GpSGHV virus titers result in reduced fecundity and lifespan, and have compromised efforts to colonize flies in the insectary for large rearing purposes. Here we investigated the within community effects on the density regulation of the individual microbiome partners in tsetse lines with different symbiotic compositions. We show that absence of Wigglesworthia results in loss of Sodalis in subsequent generations possibly due to nutritional dependancies between the symbiotic partners. While an initial decrease in Wolbachia and GpSGHV levels are also noted in the absence of Wigglesworthia, these infections eventually reach homeostatic levels indicating adaptations to the new host immune environment or nutritional ecology. Absence of all bacterial symbionts also results in an initial reduction of viral titers, which recover in the second generation. Our findings suggest that in addition to the host immune system, interdependencies between symbiotic partners result in a highly tuned density regulation for tsetse's microbiome.

摘要

采采蝇体内有一个高度调控和明确的微生物区系,由 3 种细菌共生体(必需的威氏血巴尔通体、共生的索达利司 glossinidius 和寄生的沃尔巴克氏体 pipientis)以及一种 DNA 病毒(舌蝇唾液腺增生病毒,GpSGHV)组成。通过饮食补充采采蝇的血餐,可以在没有威氏血巴尔通体或完全无共生体的情况下饲养采采蝇。在没有威氏血巴尔通体的情况下,雌性采采蝇不育,成年后代免疫力受损。索达利司的功能贡献知之甚少,而沃尔巴克氏体则导致细胞质不兼容(CI)等生殖操纵。高 GpSGHV 病毒滴度导致繁殖力下降和寿命缩短,并影响了为大规模饲养目的而在昆虫饲养室中饲养采采蝇的努力。在这里,我们研究了不同共生体组成的采采蝇系中个体微生物组伙伴的密度调节的群落内效应。我们表明,威氏血巴尔通体的缺失会导致随后几代中索达利司的缺失,可能是由于共生体之间存在营养依赖。虽然在威氏血巴尔通体缺失时,沃尔巴克氏体和 GpSGHV 的水平也会最初下降,但这些感染最终会达到稳定水平,表明它们适应了新的宿主免疫环境或营养生态。所有细菌共生体的缺失也会导致病毒滴度的最初降低,这种降低会在第二代恢复。我们的研究结果表明,除了宿主免疫系统外,共生体之间的相互依存关系也导致了采采蝇微生物组的高度精确的密度调节。

相似文献

1
Intercommunity effects on microbiome and GpSGHV density regulation in tsetse flies.
J Invertebr Pathol. 2013 Mar;112 Suppl(0):S32-9. doi: 10.1016/j.jip.2012.03.028. Epub 2012 Apr 19.
3
Transgenerational transmission of the Glossina pallidipes hytrosavirus depends on the presence of a functional symbiome.
PLoS One. 2013 Apr 22;8(4):e61150. doi: 10.1371/journal.pone.0061150. Print 2013.
4
Interactions Between Tsetse Endosymbionts and Salivary Gland Hypertrophy Virus in Hosts.
Front Microbiol. 2021 May 28;12:653880. doi: 10.3389/fmicb.2021.653880. eCollection 2021.
5
Tsetse fly microbiota: form and function.
Front Cell Infect Microbiol. 2013 Oct 29;3:69. doi: 10.3389/fcimb.2013.00069. eCollection 2013.
6
The obligate mutualist Wigglesworthia glossinidia influences reproduction, digestion, and immunity processes of its host, the tsetse fly.
Appl Environ Microbiol. 2008 Oct;74(19):5965-74. doi: 10.1128/AEM.00741-08. Epub 2008 Aug 8.
7
Tissue distribution and transmission routes for the tsetse fly endosymbionts.
J Invertebr Pathol. 2013 Mar;112 Suppl(0):S116-22. doi: 10.1016/j.jip.2012.04.002. Epub 2012 Apr 19.
10
Vitamin B6 generated by obligate symbionts is critical for maintaining proline homeostasis and fecundity in tsetse flies.
Appl Environ Microbiol. 2014 Sep;80(18):5844-53. doi: 10.1128/AEM.01150-14. Epub 2014 Jul 18.

引用本文的文献

2
Interactions Between Tsetse Endosymbionts and Salivary Gland Hypertrophy Virus in Hosts.
Front Microbiol. 2021 May 28;12:653880. doi: 10.3389/fmicb.2021.653880. eCollection 2021.
4
Gene expression in reproductive organs of tsetse females - initial data in an approach to reduce fecundity.
BMC Microbiol. 2018 Nov 23;18(Suppl 1):144. doi: 10.1186/s12866-018-1294-5.
7
Tsetse fly (Glossina pallidipes) midgut responses to Trypanosoma brucei challenge.
Parasit Vectors. 2017 Dec 19;10(1):614. doi: 10.1186/s13071-017-2569-7.
9
Microbial control of arthropod-borne disease.
Mem Inst Oswaldo Cruz. 2017 Feb;112(2):81-93. doi: 10.1590/0074-02760160373.
10
Grandeur Alliances: Symbiont Metabolic Integration and Obligate Arthropod Hematophagy.
Trends Parasitol. 2016 Sep;32(9):739-749. doi: 10.1016/j.pt.2016.05.002. Epub 2016 May 25.

本文引用的文献

3
Wolbachia symbiont infections induce strong cytoplasmic incompatibility in the tsetse fly Glossina morsitans.
PLoS Pathog. 2011 Dec;7(12):e1002415. doi: 10.1371/journal.ppat.1002415. Epub 2011 Dec 8.
4
Successful transmission of a retrovirus depends on the commensal microbiota.
Science. 2011 Oct 14;334(6053):245-9. doi: 10.1126/science.1210718.
6
Tsetse salivary gland hypertrophy virus: hope or hindrance for tsetse control?
PLoS Negl Trop Dis. 2011 Aug;5(8):e1220. doi: 10.1371/journal.pntd.0001220. Epub 2011 Aug 30.
7
The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations.
Nature. 2011 Aug 24;476(7361):450-3. doi: 10.1038/nature10355.
8
Tsetse immune system maturation requires the presence of obligate symbionts in larvae.
PLoS Biol. 2011 May;9(5):e1000619. doi: 10.1371/journal.pbio.1000619. Epub 2011 May 31.
9
Sleeping sickness elimination in sight: time to celebrate and reflect, but not relax.
PLoS Negl Trop Dis. 2011 Feb 22;5(2):e1008. doi: 10.1371/journal.pntd.0001008.
10
The tsetse fly Glossina fuscipes fuscipes (Diptera: Glossina) harbours a surprising diversity of bacteria other than symbionts.
Antonie Van Leeuwenhoek. 2011 Mar;99(3):711-20. doi: 10.1007/s10482-010-9546-x. Epub 2011 Jan 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验