Suppr超能文献

一株葡糖醋杆菌中铬酸盐还原酶的结构测定和功能分析。

Structure determination and functional analysis of a chromate reductase from Gluconacetobacter hansenii.

机构信息

Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America.

出版信息

PLoS One. 2012;7(8):e42432. doi: 10.1371/journal.pone.0042432. Epub 2012 Aug 6.

Abstract

Environmental protection through biological mechanisms that aid in the reductive immobilization of toxic metals (e.g., chromate and uranyl) has been identified to involve specific NADH-dependent flavoproteins that promote cell viability. To understand the enzyme mechanisms responsible for metal reduction, the enzyme kinetics of a putative chromate reductase from Gluconacetobacter hansenii (Gh-ChrR) was measured and the crystal structure of the protein determined at 2.25 Å resolution. Gh-ChrR catalyzes the NADH-dependent reduction of chromate, ferricyanide, and uranyl anions under aerobic conditions. Kinetic measurements indicate that NADH acts as a substrate inhibitor; catalysis requires chromate binding prior to NADH association. The crystal structure of Gh-ChrR shows the protein is a homotetramer with one bound flavin mononucleotide (FMN) per subunit. A bound anion is visualized proximal to the FMN at the interface between adjacent subunits within a cationic pocket, which is positioned at an optimal distance for hydride transfer. Site-directed substitutions of residues proposed to involve in both NADH and metal anion binding (N85A or R101A) result in 90-95% reductions in enzyme efficiencies for NADH-dependent chromate reduction. In comparison site-directed substitution of a residue (S118A) participating in the coordination of FMN in the active site results in only modest (50%) reductions in catalytic efficiencies, consistent with the presence of a multitude of side chains that position the FMN in the active site. The proposed proximity relationships between metal anion binding site and enzyme cofactors is discussed in terms of rational design principles for the use of enzymes in chromate and uranyl bioremediation.

摘要

通过有助于还原固定有毒金属(例如铬酸盐和铀酰)的生物机制进行环境保护,已确定涉及促进细胞活力的特定 NADH 依赖性黄素蛋白。为了了解负责金属还原的酶机制,测量了来自 Gluconacetobacter hansenii(Gh-ChrR)的假定铬酸盐还原酶的酶动力学,并以 2.25 Å 的分辨率确定了该蛋白质的晶体结构。Gh-ChrR 在有氧条件下催化 NADH 依赖性铬酸盐、铁氰化物和铀酰阴离子的还原。动力学测量表明 NADH 作为底物抑制剂起作用;催化需要在 NADH 结合之前结合铬酸盐。Gh-ChrR 的晶体结构表明该蛋白是一个四聚体,每个亚基结合一个黄素单核苷酸(FMN)。在阳离子口袋内相邻亚基之间的界面处,可视化到一个结合的阴离子紧邻 FMN,该口袋位于有利于供氢转移的最佳距离处。对涉及 NADH 和金属阴离子结合的残基(N85A 或 R101A)进行定点取代,导致 NADH 依赖性铬酸盐还原的酶效率降低 90-95%。相比之下,参与活性位点中 FMN 配位的残基(S118A)的定点取代仅导致催化效率适度降低(50%),这与存在多种侧链将 FMN 定位在活性位点一致。讨论了金属阴离子结合位点和酶辅因子之间的拟议接近关系,以阐明在铬酸盐和铀酰生物修复中使用酶的合理设计原则。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/706a/3412864/b677e10b9916/pone.0042432.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验