Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School,Worcester, MA 01605, USA.
Mol Cell. 2012 Oct 12;48(1):5-15. doi: 10.1016/j.molcel.2012.07.003. Epub 2012 Aug 9.
Although the genomic pattern of nucleosome positioning is broadly conserved, quantitative aspects vary over evolutionary timescales. We identify the cis and trans determinants of nucleosome positioning using a functional evolutionary approach involving S. cerevisiae strains containing large genomic regions from other yeast species. In a foreign species, nucleosome depletion at promoters is maintained over poly(dA:dT) tracts, whereas internucleosome spacing and all other aspects of nucleosome positioning tested are not. Interestingly, the locations of the +1 nucleosome and RNA start sites shift in concert. Strikingly, in a foreign species, nucleosome-depleted regions occur fortuitously in coding regions, and they often act as promoters that are associated with a positioned nucleosome array linked to the length of the transcription unit. We suggest a three-step model in which nucleosome remodelers, general transcription factors, and the transcriptional elongation machinery are primarily involved in generating the nucleosome positioning pattern in vivo.
尽管核小体定位的基因组模式广泛保守,但在进化时间尺度上,其定量方面存在差异。我们使用涉及含有其他酵母物种大片段基因组的酿酒酵母菌株的功能进化方法来确定核小体定位的顺式和反式决定因素。在一个外来物种中,启动子处的核小体耗竭在聚(dA:dT)序列上得以维持,而核小体间隔和测试的所有其他核小体定位方面则没有。有趣的是,+1 核小体和 RNA 起始位点的位置协同变化。引人注目的是,在一个外来物种中,无核小体的区域偶然出现在编码区中,它们通常充当与转录单位长度相关的定位核小体阵列相关的启动子。我们提出了一个三步模型,其中核小体重塑因子、一般转录因子和转录延伸机制主要参与了体内核小体定位模式的产生。