Suppr超能文献

一种功能进化方法来鉴定核小体定位的决定因素:建立全基因组模式的统一模型。

A functional evolutionary approach to identify determinants of nucleosome positioning: a unifying model for establishing the genome-wide pattern.

机构信息

Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School,Worcester, MA 01605, USA.

出版信息

Mol Cell. 2012 Oct 12;48(1):5-15. doi: 10.1016/j.molcel.2012.07.003. Epub 2012 Aug 9.

Abstract

Although the genomic pattern of nucleosome positioning is broadly conserved, quantitative aspects vary over evolutionary timescales. We identify the cis and trans determinants of nucleosome positioning using a functional evolutionary approach involving S. cerevisiae strains containing large genomic regions from other yeast species. In a foreign species, nucleosome depletion at promoters is maintained over poly(dA:dT) tracts, whereas internucleosome spacing and all other aspects of nucleosome positioning tested are not. Interestingly, the locations of the +1 nucleosome and RNA start sites shift in concert. Strikingly, in a foreign species, nucleosome-depleted regions occur fortuitously in coding regions, and they often act as promoters that are associated with a positioned nucleosome array linked to the length of the transcription unit. We suggest a three-step model in which nucleosome remodelers, general transcription factors, and the transcriptional elongation machinery are primarily involved in generating the nucleosome positioning pattern in vivo.

摘要

尽管核小体定位的基因组模式广泛保守,但在进化时间尺度上,其定量方面存在差异。我们使用涉及含有其他酵母物种大片段基因组的酿酒酵母菌株的功能进化方法来确定核小体定位的顺式和反式决定因素。在一个外来物种中,启动子处的核小体耗竭在聚(dA:dT)序列上得以维持,而核小体间隔和测试的所有其他核小体定位方面则没有。有趣的是,+1 核小体和 RNA 起始位点的位置协同变化。引人注目的是,在一个外来物种中,无核小体的区域偶然出现在编码区中,它们通常充当与转录单位长度相关的定位核小体阵列相关的启动子。我们提出了一个三步模型,其中核小体重塑因子、一般转录因子和转录延伸机制主要参与了体内核小体定位模式的产生。

相似文献

2
Positioned and G/C-capped poly(dA:dT) tracts associate with the centers of nucleosome-free regions in yeast promoters.
Genome Res. 2010 Apr;20(4):473-84. doi: 10.1101/gr.103226.109. Epub 2010 Feb 4.
4
A packing mechanism for nucleosome organization reconstituted across a eukaryotic genome.
Science. 2011 May 20;332(6032):977-80. doi: 10.1126/science.1200508.
5
Nucleosome positioning in yeasts: methods, maps, and mechanisms.
Chromosoma. 2015 Jun;124(2):131-51. doi: 10.1007/s00412-014-0501-x. Epub 2014 Dec 23.
6
In vivo effects of histone H3 depletion on nucleosome occupancy and position in Saccharomyces cerevisiae.
PLoS Genet. 2012;8(6):e1002771. doi: 10.1371/journal.pgen.1002771. Epub 2012 Jun 21.
7
A role for Snf2-related nucleosome-spacing enzymes in genome-wide nucleosome organization.
Science. 2011 Sep 23;333(6050):1758-60. doi: 10.1126/science.1206097.
8
Genomic Nucleosome Organization Reconstituted with Pure Proteins.
Cell. 2016 Oct 20;167(3):709-721.e12. doi: 10.1016/j.cell.2016.09.045.
9
Effect of sequence-directed nucleosome disruption on cell-type-specific repression by alpha2/Mcm1 in the yeast genome.
Eukaryot Cell. 2006 Nov;5(11):1925-33. doi: 10.1128/EC.00105-06. Epub 2006 Sep 15.

引用本文的文献

1
Regulation of DNA translocation of chromatin remodeler enzyme Chd1 by exit DNA unwrapping.
Life Metab. 2025 Apr 9;4(3):loaf013. doi: 10.1093/lifemeta/loaf013. eCollection 2025 Jun.
3
An integrated machine-learning model to predict nucleosome architecture.
Nucleic Acids Res. 2024 Sep 23;52(17):10132-10143. doi: 10.1093/nar/gkae689.
4
In silico design of DNA sequences for in vivo nucleosome positioning.
Nucleic Acids Res. 2024 Jul 8;52(12):6802-6810. doi: 10.1093/nar/gkae468.
5
A genome-wide comprehensive analysis of nucleosome positioning in yeast.
PLoS Comput Biol. 2024 Jan 24;20(1):e1011799. doi: 10.1371/journal.pcbi.1011799. eCollection 2024 Jan.
6
Energy-driven genome regulation by ATP-dependent chromatin remodellers.
Nat Rev Mol Cell Biol. 2024 Apr;25(4):309-332. doi: 10.1038/s41580-023-00683-y. Epub 2023 Dec 11.
7
Functional analysis of a random-sequence chromosome reveals a high level and the molecular nature of transcriptional noise in yeast cells.
Mol Cell. 2023 Jun 1;83(11):1786-1797.e5. doi: 10.1016/j.molcel.2023.04.010. Epub 2023 May 2.
8
FOXK2 transcription factor and its roles in tumorigenesis (Review).
Oncol Lett. 2022 Nov 3;24(6):461. doi: 10.3892/ol.2022.13581. eCollection 2022 Dec.

本文引用的文献

1
A role for Snf2-related nucleosome-spacing enzymes in genome-wide nucleosome organization.
Science. 2011 Sep 23;333(6050):1758-60. doi: 10.1126/science.1206097.
3
Determinants of nucleosome organization in primary human cells.
Nature. 2011 May 22;474(7352):516-20. doi: 10.1038/nature10002.
4
A packing mechanism for nucleosome organization reconstituted across a eukaryotic genome.
Science. 2011 May 20;332(6032):977-80. doi: 10.1126/science.1200508.
5
Nucleosome depletion at yeast terminators is not intrinsic and can occur by a transcriptional mechanism linked to 3'-end formation.
Proc Natl Acad Sci U S A. 2010 Oct 19;107(42):17945-50. doi: 10.1073/pnas.1012674107. Epub 2010 Oct 4.
7
Nucleosome sequence preferences influence in vivo nucleosome organization.
Nat Struct Mol Biol. 2010 Aug;17(8):918-20. doi: 10.1038/nsmb0810-918.
8
The role of nucleosome positioning in the evolution of gene regulation.
PLoS Biol. 2010 Jul 6;8(7):e1000414. doi: 10.1371/journal.pbio.1000414.
10
Are nucleosome positions in vivo primarily determined by histone-DNA sequence preferences?
Nucleic Acids Res. 2010 Jan;38(3):709-19. doi: 10.1093/nar/gkp1043. Epub 2009 Nov 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验