Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.
Genome Res. 2011 Nov;21(11):1851-62. doi: 10.1101/gr.122267.111. Epub 2011 Sep 13.
The packaging of eukaryotic genomes into nuclesomes plays critical roles in chromatin organization and gene regulation. Studies in Saccharomyces cerevisiae indicate that nucleosome occupancy is partially encoded by intrinsic antinucleosomal DNA sequences, such as poly(A) sequences, as well as by binding sites for trans-acting factors that can evict nucleosomes, such as Reb1 and the Rsc3/30 complex. Here, we use genome-wide nucleosome occupancy maps in 13 Ascomycota fungi to discover large-scale evolutionary reprogramming of both intrinsic and trans determinants of chromatin structure. We find that poly(G)s act as intrinsic antinucleosomal sequences, comparable to the known function of poly(A)s, but that the abundance of poly(G)s has diverged greatly between species, obscuring their antinucleosomal effect in low-poly(G) species such as S. cerevisiae. We also develop a computational method that uses nucleosome occupancy maps for discovering trans-acting general regulatory factor (GRF) binding sites. Our approach reveals that the specific sequences bound by GRFs have diverged substantially across evolution, corresponding to a number of major evolutionary transitions in the repertoire of GRFs. We experimentally validate a proposed evolutionary transition from Cbf1 as a major GRF in pre-whole-genome duplication (WGD) yeasts to Reb1 in post-WGD yeasts. We further show that the mating type switch-activating protein Sap1 is a GRF in S. pombe, demonstrating the general applicability of our approach. Our results reveal that the underlying mechanisms that determine in vivo chromatin organization have diverged and that comparative genomics can help discover new determinants of chromatin organization.
真核基因组包装成核小体在染色质组织和基因调控中起着关键作用。酿酒酵母的研究表明,核小体占有率部分由内在抗核小体 DNA 序列(如多聚(A)序列)以及能够驱逐核小体的转录因子结合位点(如 Reb1 和 Rsc3/30 复合物)编码。在这里,我们使用 13 种子囊菌真菌的全基因组核小体占有率图谱来发现染色质结构的内在和转录决定因素的大规模进化重编程。我们发现多聚(G)作为内在抗核小体序列,与已知的多聚(A)功能相当,但多聚(G)的丰度在物种间有很大差异,使得低聚(G)物种(如酿酒酵母)中的抗核小体效应变得模糊不清。我们还开发了一种计算方法,该方法使用核小体占有率图谱来发现转录激活的通用调控因子(GRF)结合位点。我们的方法揭示了 GRF 结合的特定序列在进化过程中已经发生了很大的分歧,这对应于 GRF 谱中的一些主要进化转变。我们通过实验验证了从全基因组复制(WGD)前酵母中的 Cbf1 作为主要 GRF 到 WGD 后酵母中的 Reb1 的提议进化转变。我们进一步表明交配型转换激活蛋白 Sap1 是 S. pombe 中的 GRF,证明了我们方法的普遍适用性。我们的结果表明,决定体内染色质组织的潜在机制已经发生了分歧,比较基因组学可以帮助发现新的染色质组织决定因素。