Suppr超能文献

Meta 分析与图聚类相结合,鉴定 ESCC 的预后标志物。

Combination of meta-analysis and graph clustering to identify prognostic markers of ESCC.

机构信息

Department of Emergency, Shanghai 10th People's Hospital, Tongji University, Shanghai, China.

出版信息

Genet Mol Biol. 2012 Apr;35(2):530-7. doi: 10.1590/S1415-47572012000300021. Epub 2012 Jun 23.

Abstract

Esophageal squamous cell carcinoma (ESCC) is one of the most malignant gastrointestinal cancers and occurs at a high frequency rate in China and other Asian countries. Recently, several molecular markers were identified for predicting ESCC. Notwithstanding, additional prognostic markers, with a clear understanding of their underlying roles, are still required. Through bioinformatics, a graph-clustering method by DPClus was used to detect co-expressed modules. The aim was to identify a set of discriminating genes that could be used for predicting ESCC through graph-clustering and GO-term analysis. The results showed that CXCL12, CYP2C9, TGM3, MAL, S100A9, EMP-1 and SPRR3 were highly associated with ESCC development. In our study, all their predicted roles were in line with previous reports, whereby the assumption that a combination of meta-analysis, graph-clustering and GO-term analysis is effective for both identifying differentially expressed genes, and reflecting on their functions in ESCC.

摘要

食管鳞状细胞癌(ESCC)是最恶性的胃肠道癌症之一,在中国和其他亚洲国家高发。最近,已经确定了一些分子标记物来预测 ESCC。尽管如此,仍需要额外的预后标记物,以明确了解其潜在作用。通过生物信息学,使用 DPClus 的图聚类方法检测共表达模块。目的是通过图聚类和 GO 术语分析识别一组可用于预测 ESCC 的区分基因。结果表明,CXCL12、CYP2C9、TGM3、MAL、S100A9、EMP-1 和 SPRR3 与 ESCC 的发展高度相关。在我们的研究中,它们所有的预测作用都与之前的报道一致,这表明组合使用荟萃分析、图聚类和 GO 术语分析对于识别差异表达基因和反映它们在 ESCC 中的功能都是有效的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d87/3389543/bf5e48f0b363/gmb-35-2-530-gfig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验