Suppr超能文献

重温 Richards 模型:通过感染动力学验证和应用。

Richards model revisited: validation by and application to infection dynamics.

机构信息

Mprime Centre for Disease Modelling, York Institute for Health Research, York University, Toronto, Canada.

出版信息

J Theor Biol. 2012 Nov 21;313:12-9. doi: 10.1016/j.jtbi.2012.07.024. Epub 2012 Aug 7.

Abstract

Ever since Richards proposed his flexible growth function more than half a century ago, it has been a mystery that this empirical function has made many incredible coincidences with real ecological or epidemic data even though one of its parameters (i.e., the exponential term) does not seem to have clear biological meaning. It is therefore a natural challenge to mathematical biologists to provide an explanation of the interesting coincidences and a biological interpretation of the parameter. Here we start from a simple epidemic SIR model to revisit Richards model via an intrinsic relation between both models. Especially, we prove that the exponential term in the Richards model has a one-to-one nonlinear correspondence to the basic reproduction number of the SIR model. This one-to-one relation provides us an explicit formula in calculating the basic reproduction number. Another biological significance of our study is the observation that the peak time is approximately just a serial interval after the turning point. Moreover, we provide an explicit relation between final outbreak size, basic reproduction number and the peak epidemic size which means that we can predict the final outbreak size shortly after the peak time. Finally, we introduce a constraint in Richards model to address over fitting problem observed in the existing studies and then apply our method with constraint to conduct some validation analysis using the data of recent outbreaks of prototype infectious diseases such as Canada 2009 H1N1 outbreak, GTA 2003 SARS outbreak, Singapore 2005 dengue outbreak, and Taiwan 2003 SARS outbreak. Our new formula gives much more stable and precise estimate of model parameters and key epidemic characteristics such as the final outbreak size, the basic reproduction number, and the turning point, compared with earlier simulations without constraints.

摘要

自 Richards 半个多世纪前提出其弹性增长函数以来,一个令人费解的现象是,尽管该函数的一个参数(即指数项)似乎没有明确的生物学意义,但它却与许多真实的生态或流行病数据有着惊人的巧合。因此,对于数理生物学家来说,解释这些有趣的巧合并对参数进行生物学解释是一个自然而然的挑战。在这里,我们从一个简单的传染病 SIR 模型出发,通过两个模型之间的内在关系重新审视 Richards 模型。特别是,我们证明了 Richards 模型中的指数项与 SIR 模型的基本再生数之间存在一一对应的非线性关系。这种一一对应关系为我们提供了一种计算基本再生数的显式公式。我们研究的另一个生物学意义是观察到峰值时间大约就在转折点之后的一个潜伏期之后。此外,我们还提供了最终爆发规模、基本再生数和峰值流行规模之间的显式关系,这意味着我们可以在峰值时间后不久预测最终爆发规模。最后,我们在 Richards 模型中引入了一个约束条件,以解决现有研究中观察到的过拟合问题,然后使用带有约束的方法,利用加拿大 2009 年 H1N1 爆发、GTA 2003 年 SARS 爆发、新加坡 2005 年登革热爆发和台湾 2003 年 SARS 爆发等原型传染病的最新数据进行验证分析。与没有约束的早期模拟相比,我们的新公式给出了更稳定和精确的模型参数和关键流行特征(如最终爆发规模、基本再生数和转折点)的估计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验