Department of Biomedical Engineering, Science and Technology Center, Tufts University, Medford, MA 02155, USA.
J Mater Sci Mater Med. 2012 Nov;23(11):2679-95. doi: 10.1007/s10856-012-4739-7. Epub 2012 Aug 14.
A new electrospinning apparatus was developed to generate nanofibrous materials with improved organizational control. The system functions by oscillating the deposition signal (ODS) of multiple collectors, allowing significantly improved nanofiber control by manipulating the electric field which drives the electrospinning process. Other electrospinning techniques designed to impart deposited fiber organizational control, such as rotating mandrels or parallel collector systems, do not generate seamless constructs with high quality alignment in sizes large enough for medical devices. In contrast, the ODS collection system produces deposited fiber networks with highly pure alignment in a variety of forms and sizes, including flat (8 × 8 cm(2)), tubular (1.3 cm diameter), or rope-like microbundle (45 μm diameter) samples. Additionally, the mechanism of our technique allows for scale-up beyond these dimensions. The ODS collection system produced 81.6 % of fibers aligned within 5° of the axial direction, nearly a four-fold improvement over the rotating mandrel technique. The meshes produced from the 9 % (w/v) fibroin/PEO blend demonstrated significant mechanical anisotropy due to the fiber alignment. In 37 °C PBS, aligned samples produced an ultimate tensile strength of 16.47 ± 1.18 MPa, a Young's modulus of 37.33 MPa, and a yield strength of 7.79 ± 1.13 MPa. The material was 300 % stiffer when extended in the direction of fiber alignment and required 20 times the amount of force to be deformed, compared to aligned meshes extended perpendicular to the fiber direction. The ODS technique could be applied to any electrospinnable polymer to overcome the more limited uniformity and induced mechanical strain of rotating mandrel techniques, and greatly surpasses the limited length of standard parallel collector techniques.
开发了一种新的静电纺丝装置,以生成具有改进的组织控制的纳米纤维材料。该系统通过振荡多个收集器的沉积信号(ODS)来工作,通过操纵驱动静电纺丝过程的电场,可以显著改善纳米纤维的控制。其他旨在赋予沉积纤维组织控制的静电纺丝技术,例如旋转心轴或平行收集器系统,不能生成具有高质量对准的无缝结构,其尺寸不足以用于医疗器械。相比之下,ODS 收集系统以各种形式和尺寸产生具有高度纯对准的沉积纤维网络,包括平面(8×8 cm2)、管状(1.3 cm 直径)或绳状微束(45 μm 直径)样品。此外,我们的技术机制允许超过这些尺寸的扩展。ODS 收集系统产生了 81.6%的纤维在轴向 5°范围内对准,比旋转心轴技术提高了近四倍。由 9%(w/v)丝素/PEO 共混物制成的网孔由于纤维对准而表现出明显的机械各向异性。在 37°C PBS 中,取向样品的极限拉伸强度为 16.47±1.18 MPa,杨氏模量为 37.33 MPa,屈服强度为 7.79±1.13 MPa。与沿纤维方向延伸的取向样品相比,在该方向上延伸时,材料的刚性提高了 300%,并且需要变形的力增加了 20 倍,而沿纤维方向延伸的取向网孔的刚性则提高了 300%。与旋转心轴技术相比,ODS 技术可以应用于任何可静电纺丝的聚合物,以克服更有限的均匀性和诱导机械应变,并且大大超过了标准平行收集器技术的有限长度。