Graduate Group in Applied Science and Technology, University of California, Berkeley, CA 94720, USA.
Proc Natl Acad Sci U S A. 2012 Sep 25;109(39):15757-62. doi: 10.1073/pnas.1211017109. Epub 2012 Aug 13.
Oxygen-evolving photosynthetic organisms possess nonphotochemical quenching (NPQ) pathways that protect against photo-induced damage. The majority of NPQ in plants is regulated on a rapid timescale by changes in the pH of the thylakoid lumen. In order to quantify the rapidly reversible component of NPQ, called qE, we developed a mathematical model of pH-dependent quenching of chlorophyll excitations in Photosystem II. Our expression for qE depends on the protonation of PsbS and the deepoxidation of violaxanthin by violaxanthin deepoxidase. The model is able to simulate the kinetics of qE at low and high light intensities. The simulations suggest that the pH of the lumen, which activates qE, is not itself affected by qE. Our model provides a framework for testing hypothesized qE mechanisms and for assessing the role of qE in improving plant fitness in variable light intensity.
产氧光合作用生物拥有非光化学猝灭(NPQ)途径,可以防止光诱导损伤。植物中的大多数 NPQ 可以通过类囊体腔 pH 的变化在快速时间尺度上进行调节。为了量化称为 qE 的 NPQ 的快速可逆部分,我们开发了一个关于光系统 II 中叶绿素激发的 pH 依赖性猝灭的数学模型。我们的 qE 表达式取决于 PsbS 的质子化和紫黄质脱环氧化酶对紫黄质的深度氧化。该模型能够模拟在低光和高光强下 qE 的动力学。模拟表明,激活 qE 的腔室 pH 本身不受 qE 的影响。我们的模型为测试假设的 qE 机制提供了一个框架,并评估了 qE 在改善植物在不同光强下适应性方面的作用。