Suppr超能文献

运用标准人体测量学指标预测足球运动员的双能 X 射线吸收法体成分。

Predicting football players' dual-energy x-ray absorptiometry body composition using standard anthropometric measures.

机构信息

Applied Exercise Science Laboratory, Texas A&M University, College Station, TX 77843-4243, USA.

出版信息

J Athl Train. 2012 May-Jun;47(3):257-63. doi: 10.4085/1062-6050-47.3.12.

Abstract

CONTEXT

The recent increase in athlete size, particularly in football athletes of all levels, coupled with the increased health risk associated with obesity warrants continued monitoring of body composition from a health perspective in this population. Equations developed to predict percentage of body fat (%Fat) have been shown to be population specific and might not be accurate for football athletes.

OBJECTIVE

To develop multiple regression equations using standard anthropometric measurements to estimate dual-energy x-ray absorptiometry %Fat (DEXA%Fat) in collegiate football players.

DESIGN

Controlled laboratory study.

PATIENTS AND OTHER PARTICIPANTS

One hundred fifty-seven National Collegiate Athletic Association Division IA football athletes (age = 20 ± 1 years, height = 185.6 ± 6.5 cm, mass = 103.1 ± 20.4 kg, DEXA%Fat = 19.5 ± 9.1%) participated.

MAIN OUTCOME MEASURE(S): Participants had the following measures: (1) body composition testing with dual-energy x-ray absorptiometry; (2) skinfold measurements in millimeters, including chest, triceps, subscapular, midaxillary, suprailiac, abdominal (SFAB), and thigh; and (3) standard circumference measurements in centimeters, including ankle, calf, thigh, hip (AHIP), waist, umbilical (AUMB), chest, wrist, forearm, arm, and neck. Regression analysis and fit statistics were used to determine the relationship between DEXA%Fat and each skinfold thickness, sum of all skinfold measures (SFSUM), and individual circumference measures.

RESULTS

Statistical analysis resulted in the development of 3 equations to predict DEXA%Fat: model 1, (0.178 · AHIP) + (0.097 · AUMB) + (0.089 · SFSUM) - 19.641; model 2, (0.193 · AHIP) + (0.133 · AUMB) + (0.371 · SFAB) - 23.0523; and model 3, (0.132 · SFSUM) + 3.530. The R(2) values were 0.94 for model 1, 0.93 for model 2, and 0.91 for model 3 (for all, P < .001).

CONCLUSIONS

The equations developed provide an accurate way to assess DEXA%Fat in collegiate football players using standard anthropometric measures so athletic trainers and coaches can monitor these athletes at increased health risk due to increased size.

摘要

背景

最近运动员的体型,尤其是各级足球运动员的体型都有所增加,再加上肥胖相关的健康风险增加,这使得有必要从健康角度继续监测这一人群的身体成分。已开发出的用于预测体脂百分比(%Fat)的方程显示具有人群特异性,并且可能不适用于足球运动员。

目的

利用标准人体测量学指标建立多元回归方程,以估计大学生足球运动员的双能 X 射线吸收法(DEXA)%Fat(DEXA%Fat)。

设计

对照实验室研究。

患者和其他参与者

157 名美国全国大学体育协会(NCAA)一级足球运动员(年龄=20±1 岁,身高=185.6±6.5cm,体重=103.1±20.4kg,DEXA%Fat=19.5±9.1%)参加了研究。

主要观察指标

参与者接受了以下测试:(1)采用双能 X 射线吸收法进行身体成分测试;(2)毫米级别的皮褶测量,包括胸部、肱三头肌、肩胛下、腋窝、髂嵴上、腹部(SFAB)和大腿;(3)厘米级别的标准周长测量,包括脚踝、小腿、大腿、髋部(AHIP)、腰部、脐部(AUMB)、胸部、腕部、前臂、手臂和颈部。回归分析和拟合统计用于确定 DEXA%Fat 与每个皮褶厚度、所有皮褶测量总和(SFSUM)和各个周长测量值之间的关系。

结果

统计分析得出了 3 个预测 DEXA%Fat 的方程:模型 1,(0.178·AHIP)+(0.097·AUMB)+(0.089·SFSUM)-19.641;模型 2,(0.193·AHIP)+(0.133·AUMB)+(0.371·SFAB)-23.0523;和模型 3,(0.132·SFSUM)+3.530。模型 1 的 R²值为 0.94,模型 2 为 0.93,模型 3 为 0.91(所有模型,P<.001)。

结论

这些方程的建立为使用标准人体测量学指标评估大学生足球运动员的 DEXA%Fat 提供了一种准确的方法,使运动训练师和教练能够监测这些因体型增大而面临更高健康风险的运动员。

相似文献

3
Anthropometric prediction of DXA-measured percentage of fat mass in male karate athletes.
J Sports Med Phys Fitness. 2023 Apr;63(4):558-565. doi: 10.23736/S0022-4707.22.14355-0. Epub 2022 Oct 28.
4
Prediction of intra-abdominal and subcutaneous abdominal adipose tissue in healthy pre-pubertal children.
Int J Obes Relat Metab Disord. 1998 Jun;22(6):549-58. doi: 10.1038/sj.ijo.0800624.
9
Equations based on anthropometry to predict body fat measured by absorptiometry in schoolchildren and adolescents.
J Pediatr (Rio J). 2017 Jul-Aug;93(4):365-373. doi: 10.1016/j.jped.2016.08.008. Epub 2017 Jan 26.
10

引用本文的文献

1
Anthropometric-based predictive equations developed with multi-component models for estimating body composition in athletes.
Eur J Appl Physiol. 2025 Mar;125(3):595-610. doi: 10.1007/s00421-024-05672-3. Epub 2024 Dec 6.
2
Validation of skinfold equations and alternative methods for the determination of fat-free mass in young athletes.
Front Sports Act Living. 2023 Aug 11;5:1240252. doi: 10.3389/fspor.2023.1240252. eCollection 2023.
4
Predicting muscular strength using demographics, skeletal dimensions, and body composition measures.
Sports Med Health Sci. 2021 Feb 15;3(1):34-39. doi: 10.1016/j.smhs.2021.02.001. eCollection 2021 Mar.
5
Anthropometric Prediction of DXA-Measured Percentage of Fat Mass in Athletes With Unilateral Lower Limb Amputation.
Front Physiol. 2020 Dec 23;11:620040. doi: 10.3389/fphys.2020.620040. eCollection 2020.
6
The Omega-3 Index in National Collegiate Athletic Association Division I Collegiate Football Athletes.
J Athl Train. 2019 Jan;54(1):7-11. doi: 10.4085/1062-6050-387-18. Epub 2019 Jan 15.
7
Accuracy of Anthropometric Equations for Estimating Body Fat in Professional Male Soccer Players Compared with DXA.
J Sports Med (Hindawi Publ Corp). 2018 Mar 14;2018:6843792. doi: 10.1155/2018/6843792. eCollection 2018.
8
Differences between the sexes in athletes' body composition and lower limb bioimpedance values.
Muscles Ligaments Tendons J. 2018 Apr 16;7(4):573-581. doi: 10.11138/mltj/2017.7.4.573. eCollection 2017 Oct-Dec.

本文引用的文献

1
Practical Assessment of Body Composition.
Phys Sportsmed. 1985 May;13(5):76-90. doi: 10.1080/00913847.1985.11708790.
2
Metabolic syndrome and insulin resistance in Division 1 collegiate football players.
Med Sci Sports Exerc. 2009 Dec;41(12):2105-10. doi: 10.1249/MSS.0b013e3181abdfec.
3
Prevalence of cardiovascular disease risk factors among National Football League players.
JAMA. 2009 May 27;301(20):2111-9. doi: 10.1001/jama.2009.716.
4
Presence of metabolic syndrome in football linemen.
J Athl Train. 2008 Oct-Dec;43(6):608-16. doi: 10.4085/1062-6050-43.6.608.
5
Prevalence of overweight and obesity in collegiate American football players, by position.
J Am Coll Health. 2008 Jul-Aug;57(1):33-8. doi: 10.3200/JACH.57.1.33-38.
6
Epidemiology of college athlete sizes, 1950s to current.
Res Sports Med. 2008;16(2):111-27. doi: 10.1080/15438620802103320.
7
Prevalence of metabolic syndrome in retired National Football League players.
Am J Cardiol. 2008 May 1;101(9):1281-4. doi: 10.1016/j.amjcard.2007.12.029. Epub 2008 Mar 7.
8
Overweight and obesity among youth participants in American football.
J Pediatr. 2007 Oct;151(4):378-82. doi: 10.1016/j.jpeds.2007.03.044. Epub 2007 Jul 24.
10
Prevalence of overweight among high school football linemen.
JAMA. 2007 Jan 24;297(4):363-4. doi: 10.1001/jama.297.4.363.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验