Suppr超能文献

工程化 N-乙酰葡萄糖胺代谢途径以提高变铅青链霉菌 A3(2)中抗生素的产量以及 NagA 在葡萄糖胺代谢中的意想不到的作用。

Engineering of N-acetylglucosamine metabolism for improved antibiotic production in Streptomyces coelicolor A3(2) and an unsuspected role of NagA in glucosamine metabolism.

出版信息

Bioengineered. 2012 Sep-Oct;3(5):280-5. doi: 10.4161/bioe.21371. Epub 2012 Aug 15.

Abstract

N-acetylglucosamine (GlcNAc), the monomer of chitin and constituent of bacterial peptidoglycan, is a preferred carbon and nitrogen source for streptomycetes. Recent studies have revealed new functions of GlcNAc in nutrient signaling of bacteria. Exposure to GlcNAc activates development and antibiotic production of Streptomyces coelicolor under poor growth conditions (famine) and blocks these processes under rich conditions (feast). Glucosamine-6-phosphate (GlcN-6P) is a key molecule in this signaling pathway and acts as an allosteric effector of a pleiotropic transcriptional repressor DasR, the regulon of which includes the GlcNAc metabolic enzymes N-actetylglucosamine-6-phosphate (GlcNAc-6P) deacetylase (NagA) and GlcN-6P deaminase (NagB). Intracellular accumulation of GlcNAc-6P and GlcN-6P enhanced production of the pigmented antibiotic actinorhodin. When the nagB mutant was challenged with GlcNAc or GlcN, spontaneous second-site mutations that relieved the toxicity of the accumulated sugar phosphates were obtained. Surprisingly, deletion of nagA also relieved toxicity of GlcN, indicating novel linkage between the GlcN and GlcNAc utilization pathways. The strongly enhanced antibiotic production observed for many suppressor mutants shows the potential of the modulation of GlcNAc and GlcN metabolism as a metabolic engineering tool toward the improvement of antibiotic productivity or even the discovery of novel compounds.

摘要

N-乙酰葡萄糖胺(GlcNAc)是几丁质的单体和细菌肽聚糖的组成部分,是链霉菌的首选碳源和氮源。最近的研究揭示了 GlcNAc 在细菌营养信号中的新功能。在贫营养条件(饥饿)下,GlcNAc 暴露会激活链霉菌协同色素的产生和抗生素的产生,而在富营养条件(饱食)下则会阻断这些过程。葡萄糖胺-6-磷酸(GlcN-6P)是该信号通路中的关键分子,作为多效转录阻遏物 DasR 的别构效应物发挥作用,其调控基因包括 GlcNAc 代谢酶 N-乙酰葡萄糖胺-6-磷酸(GlcNAc-6P)去乙酰化酶(NagA)和 GlcN-6P 脱氨酶(NagB)。细胞内 GlcNAc-6P 和 GlcN-6P 的积累增强了色素性抗生素放线紫红素的产生。当 nagB 突变体受到 GlcNAc 或 GlcN 挑战时,获得了缓解积累糖磷酸毒性的自发第二点突变。令人惊讶的是,nagA 的缺失也缓解了 GlcN 的毒性,表明 GlcN 和 GlcNAc 利用途径之间存在新的联系。许多抑制突变体观察到的强烈增强的抗生素产生表明,调节 GlcNAc 和 GlcN 代谢作为代谢工程工具来提高抗生素生产力甚至发现新化合物具有潜力。

相似文献

3
Multiple allosteric effectors control the affinity of DasR for its target sites.多种变构效应物控制DasR对其靶位点的亲和力。
Biochem Biophys Res Commun. 2015 Aug 14;464(1):324-9. doi: 10.1016/j.bbrc.2015.06.152. Epub 2015 Jun 26.

引用本文的文献

本文引用的文献

4
Carbon source regulation of antibiotic production.碳源对抗生素产生的调控。
J Antibiot (Tokyo). 2010 Aug;63(8):442-59. doi: 10.1038/ja.2010.78. Epub 2010 Jul 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验