Suppr超能文献

胆酸只有在酵母寿命的某些关键时期添加,才能延长其寿命。

Lithocholic acid extends longevity of chronologically aging yeast only if added at certain critical periods of their lifespan.

机构信息

Department of Biology, Concordia University,Montreal, Quebec, Canada.

出版信息

Cell Cycle. 2012 Sep 15;11(18):3443-62. doi: 10.4161/cc.21754. Epub 2012 Aug 16.

Abstract

Our studies revealed that LCA (lithocholic bile acid) extends yeast chronological lifespan if added to growth medium at the time of cell inoculation. We also demonstrated that longevity in chronologically aging yeast is programmed by the level of metabolic capacity and organelle organization that they developed before entering a quiescent state and, thus, that chronological aging in yeast is likely to be the final step of a developmental program progressing through at least one checkpoint prior to entry into quiescence. Here, we investigate how LCA influences longevity and several longevity-defining cellular processes in chronologically aging yeast if added to growth medium at different periods of the lifespan. We found that LCA can extend longevity of yeast under CR (caloric restriction) conditions only if added at either of two lifespan periods. One of them includes logarithmic and diauxic growth phases, whereas the other period exists in early stationary phase. Our findings suggest a mechanism linking the ability of LCA to increase the lifespan of CR yeast only if added at either of the two periods to its differential effects on various longevity-defining processes. In this mechanism, LCA controls these processes at three checkpoints that exist in logarithmic/diauxic, post-diauxic and early stationary phases. We therefore hypothesize that a biomolecular longevity network progresses through a series of checkpoints, at each of which (1) genetic, dietary and pharmacological anti-aging interventions modulate a distinct set of longevity-defining processes comprising the network; and (2) checkpoint-specific master regulators monitor and govern the functional states of these processes.

摘要

我们的研究表明,LCA(石胆酸)如果在细胞接种时添加到生长培养基中,可以延长酵母的时序寿命。我们还证明,在进入静止状态之前,酵母的代谢能力和细胞器组织水平决定了其寿命的长短,因此,酵母的时序老化很可能是在进入静止状态之前至少经过一个检查点的发育程序的最后一步。在这里,我们研究了如果在酵母的时序老化过程中的不同时期将 LCA 添加到生长培养基中,LCA 如何影响其寿命和几个寿命定义的细胞过程。我们发现,只有在两种寿命期之一时,LCA 才能在 CR(热量限制)条件下延长酵母的寿命。其中一个时期包括对数和双重生长阶段,而另一个时期则存在于早期静止阶段。我们的研究结果表明,一种机制将 LCA 增加 CR 酵母寿命的能力与其对各种寿命定义过程的不同影响联系起来,只有在这两个时期之一添加 LCA 才能实现。在这个机制中,LCA 在对数/双重、双重后和早期静止阶段的三个检查点控制这些过程。因此,我们假设生物分子寿命网络通过一系列检查点进行,在每个检查点(1)遗传、饮食和药理学的抗衰老干预调节由网络组成的一组不同的寿命定义过程;(2)检查点特异性的主调控器监测和管理这些过程的功能状态。

相似文献

3
Mitochondrial membrane lipidome defines yeast longevity.
Aging (Albany NY). 2013 Jul;5(7):551-74. doi: 10.18632/aging.100578.
6
Mechanisms that Link Chronological Aging to Cellular Quiescence in Budding Yeast.
Int J Mol Sci. 2020 Jul 2;21(13):4717. doi: 10.3390/ijms21134717.
8
Effect of calorie restriction on the metabolic history of chronologically aging yeast.
Exp Gerontol. 2009 Sep;44(9):555-71. doi: 10.1016/j.exger.2009.06.001. Epub 2009 Jun 17.

引用本文的文献

1
Exploring the anti-aging potential of natural products and plant extracts in budding yeast : A review.
F1000Res. 2024 Dec 17;12:1265. doi: 10.12688/f1000research.141669.2. eCollection 2023.
2
Lithocholic acid phenocopies anti-ageing effects of calorie restriction.
Nature. 2024 Dec 18. doi: 10.1038/s41586-024-08329-5.
3
TUDCA modulates drug bioavailability to regulate resistance to acute ER stress in .
Mol Biol Cell. 2025 Feb 1;36(2):ar13. doi: 10.1091/mbc.E24-04-0147. Epub 2024 Dec 11.
4
Tauroursodeoxycholic acid targets HSP90 to promote protein homeostasis and extends healthy lifespan.
Sci China Life Sci. 2025 Feb;68(2):416-430. doi: 10.1007/s11427-024-2717-6. Epub 2024 Sep 24.
5
Unraveling the Anti-Aging Properties of Phycocyanin from the Cyanobacterium Spirulina ().
Int J Mol Sci. 2024 Apr 11;25(8):4215. doi: 10.3390/ijms25084215.
8
A Systematic Review on Quiescent State Research Approaches in .
Cells. 2023 Jun 12;12(12):1608. doi: 10.3390/cells12121608.
9
We are all aging, and here's why.
Aging Med (Milton). 2022 Oct 3;5(3):211-231. doi: 10.1002/agm2.12223. eCollection 2022 Sep.
10
The Effect of Lithocholic Acid on the Gut-Liver Axis.
Front Pharmacol. 2022 Jul 7;13:910493. doi: 10.3389/fphar.2022.910493. eCollection 2022.

本文引用的文献

3
Replicative and chronological aging in Saccharomyces cerevisiae.
Cell Metab. 2012 Jul 3;16(1):18-31. doi: 10.1016/j.cmet.2012.06.002.
4
A network-based approach on elucidating the multi-faceted nature of chronological aging in S. cerevisiae.
PLoS One. 2011;6(12):e29284. doi: 10.1371/journal.pone.0029284. Epub 2011 Dec 21.
5
Rapamycin increases lifespan and inhibits spontaneous tumorigenesis in inbred female mice.
Cell Cycle. 2011 Dec 15;10(24):4230-6. doi: 10.4161/cc.10.24.18486.
6
Increased longevity of some C. elegans mitochondrial mutants explained by activation of an alternative energy-producing pathway.
Mech Ageing Dev. 2011 Oct;132(10):515-8. doi: 10.1016/j.mad.2011.08.004. Epub 2011 Aug 22.
7
In search of housekeeping pathways that regulate longevity.
Cell Cycle. 2011 Sep 15;10(18):3042-4. doi: 10.4161/cc.10.18.16947.
8
Regulation of yeast chronological life span by TORC1 via adaptive mitochondrial ROS signaling.
Cell Metab. 2011 Jun 8;13(6):668-78. doi: 10.1016/j.cmet.2011.03.018.
10
The cell-non-autonomous nature of electron transport chain-mediated longevity.
Cell. 2011 Jan 7;144(1):79-91. doi: 10.1016/j.cell.2010.12.016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验