Suppr超能文献

全基因组关联研究中基于网络的因果基因检测:一种改进的模块搜索算法

Network-assisted Causal Gene Detection in Genome-wide Association Studies: An Improved Module Search Algorithm.

作者信息

Jia Peilin, Zhao Zhongming

机构信息

Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.

出版信息

IEEE Int Workshop Genomic Signal Process Stat. 2011:131-134. doi: 10.1109/GENSiPS.2011.6169462.

Abstract

The recent success of genome-wide association (GWA) studies has greatly expanded our understanding of many complex diseases by delivering previously unknown loci and genes. A large number of GWAS datasets have already been made available, with more being generated. To explore the underlying moderate and weak signals, we recently developed a network-based dense module search (DMS) method for identification of disease candidate genes from GWAS datasets, leveraging on the joint effect of multiple genes. DMS is designed to dynamically search for the best nodes in a step-wise fashion and, thus, could overcome the limitation of pre-defined gene sets. Here, we propose an improved version of DMS, the topologically-adjusted DMS, to facilitate the analysis of complex diseases. Building on the previous version of DMS, we improved the randomization process by taking into account the topological character, aiming to adjust the bias potentially caused by high-degree nodes in the whole network. We demonstrated the topologically-adjusted DMS algorithm in a GWAS dataset for schizophrenia. We found the improved DMS strategy could effectively identify candidate genes while reducing the burden of high-degree nodes. In our evaluation, we found more candidate genes identified by the topologically-adjusted DMS algorithm have been reported in the previous association studies, suggesting this new algorithm has better performance than the unweighted DMS algorithm. Finally, our functional analysis of the top module genes revealed that they are enriched in immune-related pathways.

摘要

全基因组关联(GWA)研究最近取得的成功,通过发现此前未知的基因座和基因,极大地拓展了我们对许多复杂疾病的认识。大量的GWA研究数据集已经可以获取,并且仍在不断产生更多数据。为了探索潜在的中等强度和弱信号,我们最近开发了一种基于网络的密集模块搜索(DMS)方法,用于从GWA研究数据集中识别疾病候选基因,该方法利用了多个基因的联合效应。DMS旨在以逐步的方式动态搜索最佳节点,从而克服预定义基因集的局限性。在此,我们提出了DMS的改进版本——拓扑调整后的DMS,以促进对复杂疾病的分析。在先前版本的DMS基础上,我们通过考虑拓扑特征改进了随机化过程,旨在调整整个网络中高度数节点可能导致的偏差。我们在一个精神分裂症的GWA研究数据集中展示了拓扑调整后的DMS算法。我们发现改进后的DMS策略能够有效识别候选基因,同时减轻高度数节点的负担。在我们的评估中,我们发现拓扑调整后的DMS算法识别出的更多候选基因在先前的关联研究中已有报道,这表明这种新算法比未加权的DMS算法具有更好的性能。最后,我们对顶级模块基因的功能分析表明,它们在免疫相关途径中富集。

相似文献

1
Network-assisted Causal Gene Detection in Genome-wide Association Studies: An Improved Module Search Algorithm.
IEEE Int Workshop Genomic Signal Process Stat. 2011:131-134. doi: 10.1109/GENSiPS.2011.6169462.
2
Network-assisted investigation of combined causal signals from genome-wide association studies in schizophrenia.
PLoS Comput Biol. 2012;8(7):e1002587. doi: 10.1371/journal.pcbi.1002587. Epub 2012 Jul 5.
3
dmGWAS: dense module searching for genome-wide association studies in protein-protein interaction networks.
Bioinformatics. 2011 Jan 1;27(1):95-102. doi: 10.1093/bioinformatics/btq615. Epub 2010 Nov 2.
4
Searching joint association signals in CATIE schizophrenia genome-wide association studies through a refined integrative network approach.
BMC Genomics. 2012;13 Suppl 6(Suppl 6):S15. doi: 10.1186/1471-2164-13-S6-S15. Epub 2012 Oct 26.
5
Genome-wide Network-assisted Association and Enrichment Study of Amyloid Imaging Phenotype in Alzheimer's Disease.
Curr Alzheimer Res. 2019;16(13):1163-1174. doi: 10.2174/1567205016666191121142558.
6
Network-Based Meta-Analyses of Associations of Multiple Gene Expression Profiles with Bone Mineral Density Variations in Women.
PLoS One. 2016 Jan 25;11(1):e0147475. doi: 10.1371/journal.pone.0147475. eCollection 2016.
7
An algorithm for direct causal learning of influences on patient outcomes.
Artif Intell Med. 2017 Jan;75:1-15. doi: 10.1016/j.artmed.2016.10.003. Epub 2016 Nov 5.
8
Identification of susceptibility modules for coronary artery disease using a genome wide integrated network analysis.
Gene. 2013 Dec 1;531(2):347-54. doi: 10.1016/j.gene.2013.08.059. Epub 2013 Aug 29.
9
Leveraging lung tissue transcriptome to uncover candidate causal genes in COPD genetic associations.
Hum Mol Genet. 2018 May 15;27(10):1819-1829. doi: 10.1093/hmg/ddy091.
10
GSNFS: Gene subnetwork biomarker identification of lung cancer expression data.
BMC Med Genomics. 2016 Dec 5;9(Suppl 3):70. doi: 10.1186/s12920-016-0231-4.

引用本文的文献

2
GWAS and drug targets.
BMC Genomics. 2014;15 Suppl 4(Suppl 4):S5. doi: 10.1186/1471-2164-15-S4-S5. Epub 2014 May 20.
3
Searching joint association signals in CATIE schizophrenia genome-wide association studies through a refined integrative network approach.
BMC Genomics. 2012;13 Suppl 6(Suppl 6):S15. doi: 10.1186/1471-2164-13-S6-S15. Epub 2012 Oct 26.

本文引用的文献

1
Do cancer proteins really interact strongly in the human protein-protein interaction network?
Comput Biol Chem. 2011 Jun;35(3):121-5. doi: 10.1016/j.compbiolchem.2011.04.005.
2
Principles for the post-GWAS functional characterization of cancer risk loci.
Nat Genet. 2011 Jun;43(6):513-8. doi: 10.1038/ng.840.
3
Gene set analysis of genome-wide association studies: methodological issues and perspectives.
Genomics. 2011 Jul;98(1):1-8. doi: 10.1016/j.ygeno.2011.04.006. Epub 2011 Apr 30.
4
Knockdown of mental disorder susceptibility genes disrupts neuronal network physiology in vitro.
Mol Cell Neurosci. 2011 Jun;47(2):93-9. doi: 10.1016/j.mcn.2010.12.014. Epub 2011 Mar 30.
5
Pathway-based analysis of GWAS datasets: effective but caution required.
Int J Neuropsychopharmacol. 2011 May;14(4):567-72. doi: 10.1017/S1461145710001446. Epub 2010 Dec 16.
7
Analysing biological pathways in genome-wide association studies.
Nat Rev Genet. 2010 Dec;11(12):843-54. doi: 10.1038/nrg2884.
8
dmGWAS: dense module searching for genome-wide association studies in protein-protein interaction networks.
Bioinformatics. 2011 Jan 1;27(1):95-102. doi: 10.1093/bioinformatics/btq615. Epub 2010 Nov 2.
9
Common variants conferring risk of schizophrenia: a pathway analysis of GWAS data.
Schizophr Res. 2010 Sep;122(1-3):38-42. doi: 10.1016/j.schres.2010.07.001. Epub 2010 Jul 24.
10
Schizophrenia gene networks and pathways and their applications for novel candidate gene selection.
PLoS One. 2010 Jun 29;5(6):e11351. doi: 10.1371/journal.pone.0011351.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验