Suppr超能文献

纳米技术在骨组织工程中的作用的观点。

Perspectives on the role of nanotechnology in bone tissue engineering.

机构信息

Center for Advanced Structural Ceramics, Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, UK.

出版信息

Dent Mater. 2013 Jan;29(1):103-15. doi: 10.1016/j.dental.2012.08.001. Epub 2012 Aug 14.

Abstract

OBJECTIVE

This review surveys new developments in bone tissue engineering, specifically focusing on the promising role of nanotechnology and describes future avenues of research.

METHODS

The review first reinforces the need to fabricate scaffolds with multi-dimensional hierarchies for improved mechanical integrity. Next, new advances to promote bioactivity by manipulating the nanolevel internal surfaces of scaffolds are examined followed by an evaluation of techniques using scaffolds as a vehicle for local drug delivery to promote bone regeneration/integration and methods of seeding cells into the scaffold.

RESULTS

Through a review of the state of the field, critical questions are posed to guide future research toward producing materials and therapies to bring state-of-the-art technology to clinical settings.

SIGNIFICANCE

The development of scaffolds for bone regeneration requires a material able to promote rapid bone formation while possessing sufficient strength to prevent fracture under physiological loads. Success in simultaneously achieving mechanical integrity and sufficient bioactivity with a single material has been limited. However, the use of new tools to manipulate and characterize matter down to the nano-scale may enable a new generation of bone scaffolds that will surpass the performance of autologous bone implants.

摘要

目的

本综述调查了骨组织工程学的新进展,特别是关注纳米技术的有前途的作用,并描述了未来的研究方向。

方法

该综述首先强调了需要制造具有多维层次结构的支架以提高机械完整性。接下来,研究了通过操纵支架纳米级内表面来提高生物活性的新进展,然后评估了将支架用作局部药物输送载体以促进骨再生/整合的技术以及将细胞接种到支架中的方法。

结果

通过对该领域现状的回顾,提出了一些关键问题,以指导未来的研究,从而为临床提供最先进的技术。

意义

用于骨再生的支架的开发需要一种能够促进快速骨形成的材料,同时具有足够的强度以防止在生理负荷下骨折。成功地用单一材料同时实现机械完整性和足够的生物活性受到限制。然而,使用新工具来操纵和表征物质到纳米级可能会使新一代的骨支架超越自体骨植入物的性能。

相似文献

1
Perspectives on the role of nanotechnology in bone tissue engineering.
Dent Mater. 2013 Jan;29(1):103-15. doi: 10.1016/j.dental.2012.08.001. Epub 2012 Aug 14.
2
Silk scaffolds in bone tissue engineering: An overview.
Acta Biomater. 2017 Nov;63:1-17. doi: 10.1016/j.actbio.2017.09.027. Epub 2017 Sep 20.
3
Current state of fabrication technologies and materials for bone tissue engineering.
Acta Biomater. 2018 Oct 15;80:1-30. doi: 10.1016/j.actbio.2018.09.031. Epub 2018 Sep 22.
4
Bone tissue engineering: state of the union.
Drug Discov Today. 2014 Jun;19(6):781-6. doi: 10.1016/j.drudis.2014.04.010. Epub 2014 Apr 24.
6
Nanoparticles for bone tissue engineering.
Biotechnol Prog. 2017 May;33(3):590-611. doi: 10.1002/btpr.2469. Epub 2017 Apr 26.
7
Current progress in bioactive ceramic scaffolds for bone repair and regeneration.
Int J Mol Sci. 2014 Mar 18;15(3):4714-32. doi: 10.3390/ijms15034714.

引用本文的文献

1
Multiscale metal-based nanocomposites for bone and joint disease therapies.
Mater Today Bio. 2025 Apr 17;32:101773. doi: 10.1016/j.mtbio.2025.101773. eCollection 2025 Jun.
2
Three-dimensional bio-derived materials for biomedical applications: challenges and opportunities.
RSC Adv. 2025 Mar 28;15(12):9375-9397. doi: 10.1039/d4ra07531e. eCollection 2025 Mar 21.
4
Controlled delivery of mesenchymal stem cells via biodegradable scaffolds for fracture healing.
Nanomedicine (Lond). 2025 Jan;20(2):207-224. doi: 10.1080/17435889.2024.2439242. Epub 2024 Dec 17.
5
Recent Advances in Scaffolds for Guided Bone Regeneration.
Biomimetics (Basel). 2024 Mar 1;9(3):153. doi: 10.3390/biomimetics9030153.
6
Graphene: A Multifaceted Carbon-Based Material for Bone Tissue Engineering Applications.
ACS Omega. 2023 Dec 21;9(1):67-80. doi: 10.1021/acsomega.3c07062. eCollection 2024 Jan 9.
8
Hope for bone regeneration: The versatility of iron oxide nanoparticles.
Front Bioeng Biotechnol. 2022 Aug 25;10:937803. doi: 10.3389/fbioe.2022.937803. eCollection 2022.
9
Calcined Hydroxyapatite with Collagen I Foam Promotes Human MSC Osteogenic Differentiation.
Int J Mol Sci. 2022 Apr 11;23(8):4236. doi: 10.3390/ijms23084236.

本文引用的文献

1
Fabrication and mechanical properties of PLA/HA composites: A study of in vitro degradation.
Mater Sci Eng C Biomim Supramol Syst. 2006 Sep;26(8):1289-1295. doi: 10.1016/j.msec.2005.08.004.
3
Exploring and exploiting chemistry at the cell surface.
Nat Chem. 2011 Jul 22;3(8):582-9. doi: 10.1038/nchem.1090.
6
A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics.
Biomaterials. 2011 Apr;32(11):2757-74. doi: 10.1016/j.biomaterials.2011.01.004. Epub 2011 Feb 2.
7
Custom-made composite scaffolds for segmental defect repair in long bones.
Int Orthop. 2011 Aug;35(8):1229-36. doi: 10.1007/s00264-010-1146-x. Epub 2010 Dec 7.
8
The influence of nanoscale topographical cues on initial osteoblast morphology and migration.
Eur Cell Mater. 2010 Nov 9;20:329-43. doi: 10.22203/ecm.v020a27.
9
WISP-1/CCN4 regulates osteogenesis by enhancing BMP-2 activity.
J Bone Miner Res. 2011 Jan;26(1):193-208. doi: 10.1002/jbmr.205.
10
Biomaterials by freeze casting.
Philos Trans A Math Phys Eng Sci. 2010 Apr 28;368(1917):2099-121. doi: 10.1098/rsta.2010.0014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验