Faculty of Physics and Astronomy, Friedrich-Schiller-University Jena, Jena, Germany.
Acta Biomater. 2013 Jan;9(1):4926-34. doi: 10.1016/j.actbio.2012.08.013. Epub 2012 Aug 16.
Advances have been achieved in the design and biomechanical performance of orthopedic implants in the last decades. These include anatomically shaped and angle-stable implants for fracture fixation or improved biomaterials (e.g. ultra-high-molecular-weight polyethylene) in total joint arthroplasty. Future modifications need to address the biological function of implant surfaces. Functionalized surfaces can promote or reduce osseointegration, avoid implant-related infections or reduce osteoporotic bone loss. To this end, polyelectrolyte multilayer structures have been developed as functional coatings and intensively tested in vitro previously. Nevertheless, only a few studies address the effect of polyelectrolyte multilayer coatings of biomaterials in vivo. The aim of the present work is to evaluate the effect of polyelectrolyte coatings of titanium alloy implants on implant anchorage in an animal model. We test the hypotheses that (1) polyelectrolyte multilayers have an effect on osseointegration in vivo; (2) multilayers of chitosan/hyaluronic acid decrease osteoblast proliferation compared to native titanium alloy, and hence reduce osseointegration; (3) multilayers of chitosan/gelatine increase osteoblast proliferation compared to native titanium alloy, hence enhance osseointegration. Polyelectrolyte multilayers on titanium alloy implants were fabricated by a layer-by-layer self-assembly process. Titanium alloy (Ti) implants were alternately dipped into gelatine (Gel), hyaluronic acid (HA) and chitosan (Chi) solutions, thus assembling a Chi/Gel and a Chi/HA coating with a terminating layer of Gel or HA, respectively. A rat tibial model with bilateral placement of titanium alloy implants was employed to analyze the bones' response to polyelectrolyte surfaces in vivo. 48 rats were randomly assigned to three groups of implants: (1) native titanium alloy (control), (2) Chi/Gel and (3) Chi/HA coating. Mechanical fixation, peri-implant bone area and bone contact were evaluated by pull-out tests and histology at 3 and 8 weeks. Shear strength at 8 weeks was statistically significantly increased (p<0.05) in both Chi/Gel and Chi/HA groups compared to the titanium alloy control. No statistically significant difference (p>0.05) in bone contact or bone area was found between all groups. No decrease of osseointegration of Chi/HA-coated implants compared to non-coated implants was found. The results of polyelectrolyte coatings in a rat model showed that the Chi/Gel and Chi/HA coatings have a positive effect on mechanical implant anchorage in normal bone.
在过去的几十年中,骨科植入物的设计和生物力学性能取得了进展。这些进展包括用于骨折固定的解剖形状和角度稳定的植入物,或用于全关节置换的改进生物材料(例如超高分子量聚乙烯)。未来的改进需要解决植入物表面的生物学功能。功能化表面可以促进或减少骨整合,避免与植入物相关的感染或减少骨质疏松性骨丢失。为此,已开发出聚电解质多层结构作为功能涂层,并在以前进行了大量的体外测试。尽管如此,只有少数研究涉及生物材料的聚电解质多层涂层在体内的效果。本工作的目的是评估钛合金植入物的聚电解质涂层对动物模型中植入物固定的影响。我们检验以下假设:(1)聚电解质多层对体内骨整合有影响;(2)壳聚糖/透明质酸的多层与天然钛合金相比会降低成骨细胞增殖,从而减少骨整合;(3)壳聚糖/明胶的多层与天然钛合金相比会增加成骨细胞增殖,从而增强骨整合。通过层层自组装工艺在钛合金植入物上制备聚电解质多层。钛合金(Ti)植入物交替浸入明胶(Gel)、透明质酸(HA)和壳聚糖(Chi)溶液中,从而分别组装 Chi/Gel 和 Chi/HA 涂层,并用 Gel 或 HA 终止层。采用双侧钛合金植入物的大鼠胫骨模型在体内分析聚电解质表面对骨骼的反应。将 48 只大鼠随机分为三组植入物:(1)天然钛合金(对照),(2)Chi/Gel 和(3)Chi/HA 涂层。通过拔出试验和 3 周和 8 周时的组织学评估机械固定、植入物周围骨区和骨接触。8 周时,与钛合金对照组相比,Chi/Gel 和 Chi/HA 组的剪切强度均显著增加(p<0.05)。在所有组之间未发现骨接触或骨面积有统计学显著差异(p>0.05)。与未涂层植入物相比,Chi/HA 涂层植入物的骨整合没有降低。在大鼠模型中聚电解质涂层的结果表明,Chi/Gel 和 Chi/HA 涂层对正常骨中的机械植入物固定具有积极影响。