Suppr超能文献

分层年龄-时期-队列模型中的方差函数回归:在自我报告健康状况研究中的应用

Variance Function Regression in Hierarchical Age-Period-Cohort Models: Applications to the Study of Self-Reported Health.

作者信息

Zheng Hui, Yang Yang, Land Kenneth C

机构信息

The Ohio State University.

出版信息

Am Sociol Rev. 2011 Dec;76(6):955-983. doi: 10.1177/0003122411430940.

Abstract

Two long-standing research problems of interest to sociologists are sources of variations in social inequalities and differential contributions of the temporal dimensions of age, time period, and cohort to variations in social phenomena. Recently, scholars have introduced a model called Variance Function Regression for the study of the former problem, and a model called Hierarchical Age-Period-Cohort regression has been developed for the study of the latter. This article presents an integration of these two models as a means to study the evolution of social inequalities along distinct temporal dimensions. We apply the integrated model to survey data on subjective health status. We find substantial age, period, and cohort effects, as well as gender differences, not only for the conditional mean of self-rated health (i.e., between-group disparities), but also for the variance in this mean (i.e., within-group disparities)-and it is detection of age, period, and cohort variations in the latter disparities that application of the integrated model permits. Net of effects of age and individual-level covariates, in recent decades, cohort differences in conditional means of self-rated health have been less important than period differences that cut across all cohorts. By contrast, cohort differences of variances in these conditional means have dominated period differences. In particular, post-baby boom birth cohorts show significant and increasing levels of within-group disparities. These findings illustrate how the integrated model provides a powerful framework through which to identify and study the evolution of variations in social inequalities across age, period, and cohort temporal dimensions. Accordingly, this model should be broadly applicable to the study of social inequality in many different substantive contexts.

摘要

社会学家长期关注的两个研究问题是社会不平等差异的来源,以及年龄、时期和队列的时间维度对社会现象差异的不同贡献。最近,学者们引入了一种名为方差函数回归的模型来研究前一个问题,并且已经开发了一种名为分层年龄-时期-队列回归的模型来研究后一个问题。本文提出将这两个模型整合起来,作为研究社会不平等在不同时间维度上演变的一种手段。我们将整合后的模型应用于主观健康状况的调查数据。我们发现,不仅在自评健康的条件均值方面(即组间差异),而且在该均值的方差方面(即组内差异),都存在显著的年龄、时期和队列效应以及性别差异——而整合模型的应用使得能够检测到后一种差异中的年龄、时期和队列变化。在剔除年龄和个体层面协变量的影响后,近几十年来,自评健康条件均值的队列差异不如跨越所有队列的时期差异重要。相比之下,这些条件均值方差的队列差异主导了时期差异。特别是,婴儿潮之后出生的队列显示出组内差异显著且不断增加。这些发现说明了整合模型如何提供了一个强大的框架,通过这个框架可以识别和研究社会不平等差异在年龄、时期和队列时间维度上的演变。因此,该模型应该广泛适用于许多不同实质性背景下的社会不平等研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02db/3419541/273064095cd1/nihms-392404-f0001.jpg

相似文献

引用本文的文献

3
Ways of HIV transmission in China: The effect of age, period, and cohort.中国 HIV 传播途径:年龄、时期和队列的影响。
Front Public Health. 2022 Sep 8;10:941941. doi: 10.3389/fpubh.2022.941941. eCollection 2022.
4
Trajectories of unsecured debt and health at midlife.中年时期无担保债务与健康状况的发展轨迹。
SSM Popul Health. 2021 Jun 13;15:100846. doi: 10.1016/j.ssmph.2021.100846. eCollection 2021 Sep.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验