Suppr超能文献

酵母锰超氧化物歧化酶催化作用中的六配位锰(3+)。

Six-coordinate manganese(3+) in catalysis by yeast manganese superoxide dismutase.

机构信息

Department of Chemistry and Biochemistry, Energy-Institute for Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA.

出版信息

Proc Natl Acad Sci U S A. 2012 Sep 4;109(36):14314-9. doi: 10.1073/pnas.1212367109. Epub 2012 Aug 20.

Abstract

Reduction of superoxide (O2-) by manganese-containing superoxide dismutase occurs through either a "prompt protonation" pathway, or an "inner-sphere" pathway, with the latter leading to formation of an observable Mn-peroxo complex. We recently reported that wild-type (WT) manganese superoxide dismutases (MnSODs) from Saccharomyces cerevisiae and Candida albicans are more gated toward the "prompt protonation" pathway than human and bacterial MnSODs and suggested that this could result from small structural changes in the second coordination sphere of manganese. We report here that substitution of a second-sphere residue, Tyr34, by phenylalanine (Y34F) causes the MnSOD from S. cerevisiae to react exclusively through the "inner-sphere" pathway. At neutral pH, we have a surprising observation that protonation of the Mn-peroxo complex in the mutant yeast enzyme occurs through a fast pathway, leading to a putative six-coordinate Mn(3+) species, which actively oxidizes O2- in the catalytic cycle. Upon increasing pH, the fast pathway is gradually replaced by a slow proton-transfer pathway, leading to the well-characterized five-coordinate Mn(3+). We here propose and compare two hypothetical mechanisms for the mutant yeast enzyme, differing in the structure of the Mn-peroxo complex yet both involving formation of the active six-coordinate Mn(3+) and proton transfer from a second-sphere water molecule, which has substituted for the -OH of Tyr34, to the Mn-peroxo complex. Because WT and the mutant yeast MnSOD both rest in the 2+ state and become six-coordinate when oxidized up from Mn(2+), six-coordinate Mn(3+) species could also actively function in the mechanism of WT yeast MnSODs.

摘要

锰过氧化物歧化酶通过“快速质子化”途径或“内球”途径还原超氧化物(O2-),后者导致可观察到的 Mn-过氧复合物的形成。我们最近报道,酿酒酵母和白色念珠菌的野生型(WT)锰过氧化物歧化酶(MnSOD)比人源和细菌 MnSOD 更倾向于“快速质子化”途径,我们认为这可能是由于锰的第二配位球的微小结构变化。我们在此报告,取代第二配位球残基 Tyr34 为苯丙氨酸(Y34F)会导致来自酿酒酵母的 MnSOD 仅通过“内球”途径反应。在中性 pH 下,我们有一个惊人的观察结果,即突变酵母酶中 Mn-过氧复合物的质子化通过快速途径发生,导致假定的六配位 Mn(3+)物种,该物种在催化循环中积极氧化 O2-。随着 pH 的增加,快速途径逐渐被缓慢的质子转移途径取代,导致形成特征明确的五配位 Mn(3+)。我们在此提出并比较了突变酵母酶的两种假设机制,它们在 Mn-过氧复合物的结构上有所不同,但都涉及形成活性六配位 Mn(3+)和来自第二配位球水分子的质子转移,该水分子取代了 Tyr34 的-OH,转移到 Mn-过氧复合物。由于 WT 和突变酵母 MnSOD 都处于 2+状态,并且从 Mn(2+)氧化时变为六配位,六配位 Mn(3+)物种也可以在 WT 酵母 MnSOD 机制中发挥积极作用。

相似文献

1

引用本文的文献

本文引用的文献

1
Superoxide dismutases: ancient enzymes and new insights.超氧化物歧化酶:古老的酶与新的认识。
FEBS Lett. 2012 Mar 9;586(5):585-95. doi: 10.1016/j.febslet.2011.10.048. Epub 2011 Nov 10.
5
The structural biochemistry of the superoxide dismutases.超氧化物歧化酶的结构生物化学
Biochim Biophys Acta. 2010 Feb;1804(2):245-62. doi: 10.1016/j.bbapap.2009.11.004. Epub 2009 Nov 13.
6
Superoxide dismutases-a review of the metal-associated mechanistic variations.超氧化物歧化酶——金属相关机制变化综述
Biochim Biophys Acta. 2010 Feb;1804(2):263-74. doi: 10.1016/j.bbapap.2009.11.005. Epub 2009 Nov 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验