Department of Chemistry and Biochemistry, Energy-Institute for Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA.
Proc Natl Acad Sci U S A. 2012 Sep 4;109(36):14314-9. doi: 10.1073/pnas.1212367109. Epub 2012 Aug 20.
Reduction of superoxide (O2-) by manganese-containing superoxide dismutase occurs through either a "prompt protonation" pathway, or an "inner-sphere" pathway, with the latter leading to formation of an observable Mn-peroxo complex. We recently reported that wild-type (WT) manganese superoxide dismutases (MnSODs) from Saccharomyces cerevisiae and Candida albicans are more gated toward the "prompt protonation" pathway than human and bacterial MnSODs and suggested that this could result from small structural changes in the second coordination sphere of manganese. We report here that substitution of a second-sphere residue, Tyr34, by phenylalanine (Y34F) causes the MnSOD from S. cerevisiae to react exclusively through the "inner-sphere" pathway. At neutral pH, we have a surprising observation that protonation of the Mn-peroxo complex in the mutant yeast enzyme occurs through a fast pathway, leading to a putative six-coordinate Mn(3+) species, which actively oxidizes O2- in the catalytic cycle. Upon increasing pH, the fast pathway is gradually replaced by a slow proton-transfer pathway, leading to the well-characterized five-coordinate Mn(3+). We here propose and compare two hypothetical mechanisms for the mutant yeast enzyme, differing in the structure of the Mn-peroxo complex yet both involving formation of the active six-coordinate Mn(3+) and proton transfer from a second-sphere water molecule, which has substituted for the -OH of Tyr34, to the Mn-peroxo complex. Because WT and the mutant yeast MnSOD both rest in the 2+ state and become six-coordinate when oxidized up from Mn(2+), six-coordinate Mn(3+) species could also actively function in the mechanism of WT yeast MnSODs.
锰过氧化物歧化酶通过“快速质子化”途径或“内球”途径还原超氧化物(O2-),后者导致可观察到的 Mn-过氧复合物的形成。我们最近报道,酿酒酵母和白色念珠菌的野生型(WT)锰过氧化物歧化酶(MnSOD)比人源和细菌 MnSOD 更倾向于“快速质子化”途径,我们认为这可能是由于锰的第二配位球的微小结构变化。我们在此报告,取代第二配位球残基 Tyr34 为苯丙氨酸(Y34F)会导致来自酿酒酵母的 MnSOD 仅通过“内球”途径反应。在中性 pH 下,我们有一个惊人的观察结果,即突变酵母酶中 Mn-过氧复合物的质子化通过快速途径发生,导致假定的六配位 Mn(3+)物种,该物种在催化循环中积极氧化 O2-。随着 pH 的增加,快速途径逐渐被缓慢的质子转移途径取代,导致形成特征明确的五配位 Mn(3+)。我们在此提出并比较了突变酵母酶的两种假设机制,它们在 Mn-过氧复合物的结构上有所不同,但都涉及形成活性六配位 Mn(3+)和来自第二配位球水分子的质子转移,该水分子取代了 Tyr34 的-OH,转移到 Mn-过氧复合物。由于 WT 和突变酵母 MnSOD 都处于 2+状态,并且从 Mn(2+)氧化时变为六配位,六配位 Mn(3+)物种也可以在 WT 酵母 MnSOD 机制中发挥积极作用。