Whittaker M M, Whittaker J W
Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, P.O. Box 91000, Portland, Oregon 97291-1000, USA.
Biochemistry. 1997 Jul 22;36(29):8923-31. doi: 10.1021/bi9704212.
Mutagenesis of Escherichia coli manganese superoxide dismutase (MnSD) demonstrates involvement of the strictly conserved gateway tyrosine (Y34) in exogenous ligand interactions. Conservative replacement of this residue by phenylalanine (Y34F) affects the pH sensitivity of the active-site metal ion and perturbs ligand binding, stabilizing a temperature-independent six-coordinate azide complex. Mutant complexes characterized by optical and electron paramagnetic resonance (EPR) spectroscopy are distinct from the corresponding wild-type forms and the anion affinities are altered, consistent with modified basicity of the metal ligands. However, dismutase activity is only slightly reduced by mutagenesis, implying that tyrosine-34 is not essential for catalysis and may function indirectly as a proton donor for turnover, coupled to a protonation cycle of the metal ligands. In vivo substitution of Fe for Mn in the MnSD wild-type and mutant proteins leads to increased affinity for azide and altered active-site properties, shifting the pH-dependent transition of the active site from 9.7 (Mn) to 6.4 (Fe) for wt enzyme. This pH-coupled transition shifts once more to a higher effective pKa for Y34F Fe2-MnSD, allowing the mutant to be catalytically active well into the physiological pH range and decreasing the metal selectivity of the enzyme. Peroxide sensitivities of the Fe complexes are distinct for the wild-type and mutant proteins, indicating a role for Y34 in peroxide interactions. These results provide evidence for a conserved peroxide-protonation linkage pathway in superoxide dismutases, analogous to the proton relay chains of peroxidases, and suggests that the selectivity of Mn and Fe superoxide dismutases is determined by proton coupling with metal ligands.
大肠杆菌锰超氧化物歧化酶(MnSD)的诱变表明,严格保守的门控酪氨酸(Y34)参与外源配体相互作用。用苯丙氨酸(Y34F)保守取代该残基会影响活性位点金属离子的pH敏感性并扰乱配体结合,从而稳定温度不依赖的六配位叠氮化物复合物。通过光学和电子顺磁共振(EPR)光谱表征的突变体复合物与相应的野生型形式不同,阴离子亲和力发生改变,这与金属配体碱性的改变一致。然而,诱变仅使歧化酶活性略有降低,这意味着酪氨酸-34对于催化不是必需的,并且可能间接作为周转的质子供体,与金属配体的质子化循环偶联。在MnSD野生型和突变型蛋白中,体内用Fe替代Mn会导致对叠氮化物的亲和力增加以及活性位点性质改变,对于野生型酶,活性位点的pH依赖性转变从9.7(Mn)变为6.4(Fe)。这种pH偶联转变对于Y34F Fe2-MnSD再次转移到更高的有效pKa,使突变体在生理pH范围内具有良好的催化活性,并降低了酶的金属选择性。野生型和突变型蛋白的Fe复合物对过氧化物的敏感性不同,表明Y34在过氧化物相互作用中起作用。这些结果为超氧化物歧化酶中保守的过氧化物-质子化连接途径提供了证据,类似于过氧化物酶的质子传递链,并表明Mn和Fe超氧化物歧化酶的选择性由与金属配体的质子偶联决定。