Suppr超能文献

碘化铅钙钛矿敏化全固态亚微米薄膜介观太阳能电池,能量转换效率超过 9%。

Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%.

机构信息

School of Chemical Engineering and Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Korea.

出版信息

Sci Rep. 2012;2:591. doi: 10.1038/srep00591. Epub 2012 Aug 21.

Abstract

We report on solid-state mesoscopic heterojunction solar cells employing nanoparticles (NPs) of methyl ammonium lead iodide (CH(3)NH(3))PbI(3) as light harvesters. The perovskite NPs were produced by reaction of methylammonium iodide with PbI(2) and deposited onto a submicron-thick mesoscopic TiO(2) film, whose pores were infiltrated with the hole-conductor spiro-MeOTAD. Illumination with standard AM-1.5 sunlight generated large photocurrents (J(SC)) exceeding 17 mA/cm(2), an open circuit photovoltage (V(OC)) of 0.888 V and a fill factor (FF) of 0.62 yielding a power conversion efficiency (PCE) of 9.7%, the highest reported to date for such cells. Femto second laser studies combined with photo-induced absorption measurements showed charge separation to proceed via hole injection from the excited (CH(3)NH(3))PbI(3) NPs into the spiro-MeOTAD followed by electron transfer to the mesoscopic TiO(2) film. The use of a solid hole conductor dramatically improved the device stability compared to (CH(3)NH(3))PbI(3) -sensitized liquid junction cells.

摘要

我们报告了采用纳米颗粒(NPs)的固态介观异质结太阳能电池,这些纳米颗粒为甲胺铅碘(CH(3)NH(3))PbI(3),用作光收集器。钙钛矿 NPs 通过碘化甲胺与 PbI(2)的反应生成,并沉积在亚微米厚的介观 TiO(2)薄膜上,介观 TiO(2)薄膜的孔中渗透有空穴导体螺[MeOTAD]。用标准 AM-1.5 太阳光照射,产生了超过 17 mA/cm(2)的大光电流(J(SC)),开路光电压(V(OC))为 0.888 V,填充因子(FF)为 0.62,功率转换效率(PCE)为 9.7%,这是迄今为止此类电池中报道的最高值。飞秒激光研究结合光致吸收测量表明,电荷分离是通过从激发态的(CH(3)NH(3))PbI(3)NPs 中注入空穴到螺[MeOTAD]中进行的,然后电子转移到介观 TiO(2)薄膜中。与(CH(3)NH(3))PbI(3)敏化的液体结电池相比,使用固体空穴导体显著提高了器件稳定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b70/3423636/72fc41984284/srep00591-f1.jpg

相似文献

2
Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells.
J Am Chem Soc. 2012 Oct 24;134(42):17396-9. doi: 10.1021/ja307789s. Epub 2012 Oct 11.
3
6.5% efficient perovskite quantum-dot-sensitized solar cell.
Nanoscale. 2011 Oct 5;3(10):4088-93. doi: 10.1039/c1nr10867k. Epub 2011 Sep 7.
4
Lead methylammonium triiodide perovskite-based solar cells: an interfacial charge-transfer investigation.
ChemSusChem. 2014 Nov;7(11):3088-94. doi: 10.1002/cssc.201402566. Epub 2014 Sep 11.
5
High-efficiency perovskite solar cells based on the black polymorph of HC(NH2)2 PbI3.
Adv Mater. 2014 Aug 6;26(29):4991-8. doi: 10.1002/adma.201401137. Epub 2014 Jun 13.
6
Rational Strategies for Efficient Perovskite Solar Cells.
Acc Chem Res. 2016 Mar 15;49(3):562-72. doi: 10.1021/acs.accounts.5b00444. Epub 2016 Mar 7.
7
Solvent-Assisted Preparation of High-Performance Mesoporous CH₃NH₃Pbl₃ Perovskite Solar Cells.
J Nanosci Nanotechnol. 2016 Jan;16(1):844-50. doi: 10.1166/jnn.2016.11638.
8
Highly Efficient Perovskite Solar Cells Based on Zn Ti O Nanoparticles as Electron Transport Material.
ChemSusChem. 2018 Jan 23;11(2):424-431. doi: 10.1002/cssc.201701779. Epub 2017 Dec 29.
9
Novel perovskite solar cell with Distributed Bragg Reflector.
PLoS One. 2021 Dec 9;16(12):e0259778. doi: 10.1371/journal.pone.0259778. eCollection 2021.
10
High Efficiency MAPbI Perovskite Solar Cell Using a Pure Thin Film of Polyoxometalate as Scaffold Layer.
ChemSusChem. 2017 Oct 9;10(19):3773-3779. doi: 10.1002/cssc.201701027. Epub 2017 Aug 21.

引用本文的文献

4
Fractional differential quadrature method for modeling composite halide perovskite solar cells.
Sci Rep. 2025 Aug 22;15(1):30829. doi: 10.1038/s41598-025-07633-y.
5
Multifunctional MXene for Thermal Management in Perovskite Solar Cells.
Nanomicro Lett. 2025 Aug 4;18(1):18. doi: 10.1007/s40820-025-01855-5.
8
Flexible photovoltaics based on perovskite materials.
RSC Adv. 2025 Jul 7;15(29):23266-23301. doi: 10.1039/d5ra02563j. eCollection 2025 Jul 4.
9
Tuning Self-Trapped Exciton Emission in 1D White-Light Emitting Perovskites Through Halide Composition and Synthesis Route.
ACS Omega. 2025 Jun 9;10(24):25708-25719. doi: 10.1021/acsomega.5c01452. eCollection 2025 Jun 24.
10
Charge Extraction Multilayers Enable Positive-Intrinsic-Negative Perovskite Solar Cells with Carbon Electrodes.
ACS Energy Lett. 2025 May 13;10(6):2736-2742. doi: 10.1021/acsenergylett.4c03403. eCollection 2025 Jun 13.

本文引用的文献

1
All-solid-state dye-sensitized solar cells with high efficiency.
Nature. 2012 May 23;485(7399):486-9. doi: 10.1038/nature11067.
2
High-efficiency solid-state dye-sensitized solar cells based on TiO(2)-coated ZnO nanowire arrays.
Nano Lett. 2012 May 9;12(5):2420-4. doi: 10.1021/nl3004144. Epub 2012 Apr 11.
4
All-solid-state, semiconductor-sensitized nanoporous solar cells.
Acc Chem Res. 2012 May 15;45(5):705-13. doi: 10.1021/ar200219h. Epub 2012 Mar 2.
6
Voltage-enhancement mechanisms of an organic dye in high open-circuit voltage solid-state dye-sensitized solar cells.
ACS Nano. 2011 Oct 25;5(10):8267-74. doi: 10.1021/nn2029567. Epub 2011 Sep 20.
7
6.5% efficient perovskite quantum-dot-sensitized solar cell.
Nanoscale. 2011 Oct 5;3(10):4088-93. doi: 10.1039/c1nr10867k. Epub 2011 Sep 7.
8
Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopy.
Phys Chem Chem Phys. 2011 May 28;13(20):9083-118. doi: 10.1039/c0cp02249g. Epub 2011 Apr 6.
9
An organic D-π-A dye for record efficiency solid-state sensitized heterojunction solar cells.
Nano Lett. 2011 Apr 13;11(4):1452-6. doi: 10.1021/nl104034e. Epub 2011 Mar 4.
10
High-performance nanostructured inorganic-organic heterojunction solar cells.
Nano Lett. 2010 Jul 14;10(7):2609-12. doi: 10.1021/nl101322h.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验