Suppr超能文献

结合有限元方法和基于结构连接组的分析进行神经创伤建模:连接组神经创伤力学。

Combining the finite element method with structural connectome-based analysis for modeling neurotrauma: connectome neurotrauma mechanics.

机构信息

Soldier Protection Sciences Branch, Protection Division, U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland, United States of America.

出版信息

PLoS Comput Biol. 2012;8(8):e1002619. doi: 10.1371/journal.pcbi.1002619. Epub 2012 Aug 16.

Abstract

This article presents the integration of brain injury biomechanics and graph theoretical analysis of neuronal connections, or connectomics, to form a neurocomputational model that captures spatiotemporal characteristics of trauma. We relate localized mechanical brain damage predicted from biofidelic finite element simulations of the human head subjected to impact with degradation in the structural connectome for a single individual. The finite element model incorporates various length scales into the full head simulations by including anisotropic constitutive laws informed by diffusion tensor imaging. Coupling between the finite element analysis and network-based tools is established through experimentally-based cellular injury thresholds for white matter regions. Once edges are degraded, graph theoretical measures are computed on the "damaged" network. For a frontal impact, the simulations predict that the temporal and occipital regions undergo the most axonal strain and strain rate at short times (less than 24 hrs), which leads to cellular death initiation, which results in damage that shows dependence on angle of impact and underlying microstructure of brain tissue. The monotonic cellular death relationships predict a spatiotemporal change of structural damage. Interestingly, at 96 hrs post-impact, computations predict no network nodes were completely disconnected from the network, despite significant damage to network edges. At early times (t < 24 hrs) network measures of global and local efficiency were degraded little; however, as time increased to 96 hrs the network properties were significantly reduced. In the future, this computational framework could help inform functional networks from physics-based structural brain biomechanics to obtain not only a biomechanics-based understanding of injury, but also neurophysiological insight.

摘要

本文将脑损伤生物力学与神经元连接的图论分析(即连接组学)相结合,形成了一个神经计算模型,可捕捉创伤的时空特征。我们将通过对人类头部进行撞击的生物逼真有限元模拟预测的局部机械性脑损伤与单个个体的结构连接组的退化联系起来。该有限元模型通过包含基于扩散张量成像的各向异性本构定律,将各种长度尺度纳入到头的全尺寸模拟中。通过针对白质区域的基于实验的细胞损伤阈值,在有限元分析和基于网络的工具之间建立了耦合。一旦边缘退化,就会在“受损”网络上计算图论度量。对于额部撞击,模拟预测颞叶和枕叶在短时间(小于 24 小时)内经历最大的轴突应变和应变速率,这会导致细胞死亡的开始,从而导致损伤取决于撞击角度和大脑组织的基础微观结构。单调的细胞死亡关系预测了结构损伤的时空变化。有趣的是,在撞击后 96 小时,计算预测尽管网络边缘受到严重损坏,但没有网络节点完全与网络断开连接。在早期(t < 24 小时),网络全局和局部效率的度量值几乎没有降低;然而,随着时间增加到 96 小时,网络属性显著降低。在未来,这种计算框架可以帮助从基于物理的结构脑生物力学获得功能网络,从而不仅获得基于生物力学的损伤理解,还可以获得神经生理学的洞察力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4209/3420926/b7ec25721a70/pcbi.1002619.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验