Suppr超能文献

受限混合模型作为动脉生物力学中检验相互竞争假设的工具:简要综述。

Constrained Mixture Models as Tools for Testing Competing Hypotheses in Arterial Biomechanics: A Brief Survey.

作者信息

Valentín A, Holzapfel G A

机构信息

Institute of Biomechanics, Center of Biomedical Engineering Graz University of Technology, Kronesgasse 5-I, 8010 Graz, Austria.

出版信息

Mech Res Commun. 2012 Jun 1;42:126-133. doi: 10.1016/j.mechrescom.2012.02.003. Epub 2012 Feb 23.

Abstract

Hypothesis testing via numerical models has emerged as a powerful tool which permits the verification of theoretical frameworks against canonical experimental and clinical observations. Cleverly designed computational experiments also inspire new methodologies by elucidating important biological processes and restricting parametric spaces. Constrained mixture models of arterial growth and remodeling (G&R) can facilitate the design of computational experiments which can bypass technical limitations in the laboratory, by considering illustrative special cases. The resulting data may then inform the design of focused experimental techniques and the development of improved theories. This work is a survey of computational hypothesis-testing studies, which exploit the unique abilities offered by the constrained mixture theory of arterial G&R. Specifically, we explore the core hypotheses integrated in these models, review their basic mathematical conceptualizations, and recapitulate their most salient and illuminating findings. We then assess how a decade's worth of constrained mixture models have contributed to a lucid, emerging picture of G&R mechanisms.

摘要

通过数值模型进行假设检验已成为一种强大的工具,它能够根据典型的实验和临床观察结果来验证理论框架。精心设计的计算实验还能通过阐明重要的生物学过程和限制参数空间来启发新的方法。动脉生长与重塑(G&R)的约束混合模型可以通过考虑具有代表性的特殊情况,来促进计算实验的设计,从而绕过实验室中的技术限制。由此产生的数据随后可为重点实验技术的设计和改进理论的发展提供信息。这项工作是对计算假设检验研究的综述,这些研究利用了动脉G&R的约束混合理论所提供的独特能力。具体而言,我们探讨了这些模型中整合的核心假设,回顾了它们的基本数学概念,并概括了它们最突出和最具启发性的发现。然后,我们评估了十年来的约束混合模型如何为清晰呈现G&R机制的新图景做出贡献。

相似文献

1
Constrained Mixture Models as Tools for Testing Competing Hypotheses in Arterial Biomechanics: A Brief Survey.
Mech Res Commun. 2012 Jun 1;42:126-133. doi: 10.1016/j.mechrescom.2012.02.003. Epub 2012 Feb 23.
3
Homogenized constrained mixture models for anisotropic volumetric growth and remodeling.
Biomech Model Mechanobiol. 2017 Jun;16(3):889-906. doi: 10.1007/s10237-016-0859-1. Epub 2016 Dec 5.
4
Adaptive integration of history variables in constrained mixture models for organ-scale growth and remodeling.
Int J Numer Method Biomed Eng. 2024 Nov;40(11):e3869. doi: 10.1002/cnm.3869. Epub 2024 Sep 19.
5
An updated Lagrangian constrained mixture model of pathological cardiac growth and remodelling.
Acta Biomater. 2023 Aug;166:375-399. doi: 10.1016/j.actbio.2023.05.022. Epub 2023 May 16.
6
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
7
A finite element-based constrained mixture implementation for arterial growth, remodeling, and adaptation: theory and numerical verification.
Int J Numer Method Biomed Eng. 2013 Aug;29(8):822-49. doi: 10.1002/cnm.2555. Epub 2013 May 24.
8
How to implement constrained mixture growth and remodeling algorithms for soft biological tissues.
J Mech Behav Biomed Mater. 2023 Apr;140:105733. doi: 10.1016/j.jmbbm.2023.105733. Epub 2023 Feb 19.
10
Growth and remodeling in the pulmonary autograft: Computational evaluation using kinematic growth models and constrained mixture theory.
Int J Numer Method Biomed Eng. 2022 Jan;38(1):e3545. doi: 10.1002/cnm.3545. Epub 2021 Nov 24.

引用本文的文献

1
Reactive Constrained Mixtures for Modeling the Solid Matrix of Biological Tissues.
J Elast. 2017 Dec;129(1-2):69-105. doi: 10.1007/s10659-017-9630-9. Epub 2017 Mar 1.
2
Review of cardiac-coronary interaction and insights from mathematical modeling.
WIREs Mech Dis. 2024 May-Jun;16(3):e1642. doi: 10.1002/wsbm.1642. Epub 2024 Feb 5.
3
Aortic Remodeling Kinetics in Response to Coarctation-Induced Mechanical Perturbations.
Biomedicines. 2023 Jun 25;11(7):1817. doi: 10.3390/biomedicines11071817.
4
Computational modelling of multi-temporal ventricular-vascular interactions during the progression of pulmonary arterial hypertension.
J R Soc Interface. 2022 Nov;19(196):20220534. doi: 10.1098/rsif.2022.0534. Epub 2022 Nov 23.
5
Multiscale simulations of left ventricular growth and remodeling.
Biophys Rev. 2021 Aug 25;13(5):729-746. doi: 10.1007/s12551-021-00826-5. eCollection 2021 Oct.
6
Constrained Mixture Models of Soft Tissue Growth and Remodeling - Twenty Years After.
J Elast. 2021 Aug;145(1-2):49-75. doi: 10.1007/s10659-020-09809-1. Epub 2021 Jan 21.
7
Computational modeling of cardiac growth and remodeling in pressure overloaded hearts-Linking microstructure to organ phenotype.
Acta Biomater. 2020 Apr 1;106:34-53. doi: 10.1016/j.actbio.2020.02.010. Epub 2020 Feb 11.
8
Quickening: Translational design of resorbable synthetic vascular grafts.
Biomaterials. 2018 Aug;173:71-86. doi: 10.1016/j.biomaterials.2018.05.006. Epub 2018 May 5.
9
Computational Fluid Dynamics and Additive Manufacturing to Diagnose and Treat Cardiovascular Disease.
Trends Biotechnol. 2017 Nov;35(11):1049-1061. doi: 10.1016/j.tibtech.2017.08.008. Epub 2017 Sep 21.
10
A homogenized constrained mixture (and mechanical analog) model for growth and remodeling of soft tissue.
Biomech Model Mechanobiol. 2016 Dec;15(6):1389-1403. doi: 10.1007/s10237-016-0770-9.

本文引用的文献

1
A Multilayered Wall Model of Arterial Growth and Remodeling.
Mech Mater. 2012 Jan 1;44:110-119. doi: 10.1016/j.mechmat.2011.05.006.
2
Experiments and mechanochemical modeling of smooth muscle contraction: significance of filament overlap.
J Theor Biol. 2012 Mar 21;297:176-86. doi: 10.1016/j.jtbi.2011.11.012. Epub 2011 Nov 18.
4
A 3-D Framework for Arterial Growth and Remodeling in Response to Altered Hemodynamics.
Int J Eng Sci. 2010 Nov 1;48(11):1357-1372. doi: 10.1016/j.ijengsci.2010.06.033.
5
Modelling carotid artery adaptations to dynamic alterations in pressure and flow over the cardiac cycle.
Math Med Biol. 2010 Dec;27(4):343-71. doi: 10.1093/imammb/dqq001. Epub 2010 May 19.
6
A calcium-driven mechanochemical model for prediction of force generation in smooth muscle.
Biomech Model Mechanobiol. 2010 Dec;9(6):749-62. doi: 10.1007/s10237-010-0211-0. Epub 2010 Mar 31.
7
A model for arterial adaptation combining microstructural collagen remodeling and 3D tissue growth.
Biomech Model Mechanobiol. 2010 Dec;9(6):671-87. doi: 10.1007/s10237-010-0204-z. Epub 2010 Mar 19.
8
A Computational Framework for Fluid-Solid-Growth Modeling in Cardiovascular Simulations.
Comput Methods Appl Mech Eng. 2009 Sep 15;198(45-46):3583-3602. doi: 10.1016/j.cma.2008.09.013.
9
A 3-D constrained mixture model for mechanically mediated vascular growth and remodeling.
Biomech Model Mechanobiol. 2010 Aug;9(4):403-19. doi: 10.1007/s10237-009-0184-z. Epub 2009 Dec 29.
10
Modelling the layer-specific three-dimensional residual stresses in arteries, with an application to the human aorta.
J R Soc Interface. 2010 May 6;7(46):787-99. doi: 10.1098/rsif.2009.0357. Epub 2009 Oct 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验