IDA Group, Fraunhofer Institute FIRST, 12489 Berlin, Germany.
Comput Math Methods Med. 2012;2012:402341. doi: 10.1155/2012/402341. Epub 2012 Jun 27.
To address the problem of mixing in EEG or MEG connectivity analysis we exploit that noninteracting brain sources do not contribute systematically to the imaginary part of the cross-spectrum. Firstly, we propose to apply the existing subspace method "RAP-MUSIC" to the subspace found from the dominant singular vectors of the imaginary part of the cross-spectrum rather than to the conventionally used covariance matrix. Secondly, to estimate the specific sources interacting with each other, we use a modified LCMV-beamformer approach in which the source direction for each voxel was determined by maximizing the imaginary coherence with respect to a given reference. These two methods are applicable in this form only if the number of interacting sources is even, because odd-dimensional subspaces collapse to even-dimensional ones. Simulations show that (a) RAP-MUSIC based on the imaginary part of the cross-spectrum accurately finds the correct source locations, that (b) conventional RAP-MUSIC fails to do so since it is highly influenced by noninteracting sources, and that (c) the second method correctly identifies those sources which are interacting with the reference. The methods are also applied to real data for a motor paradigm, resulting in the localization of four interacting sources presumably in sensory-motor areas.
为了解决 EEG 或 MEG 连接分析中的混叠问题,我们利用非交互脑源不会系统地对互谱的虚部做出贡献这一特性。首先,我们建议将现有的子空间方法“RAP-MUSIC”应用于从互谱虚部的主导奇异向量中找到的子空间,而不是应用于传统上使用的协方差矩阵。其次,为了估计与每个相互作用的源,我们使用了一种改进的 LCMV-波束形成方法,其中每个体素的源方向是通过相对于给定参考最大化虚相干性来确定的。只有在相互作用的源数量为偶数的情况下,这两种方法才能以这种形式应用,因为奇数维子空间会塌缩到偶数维子空间。模拟表明:(a)基于互谱虚部的 RAP-MUSIC 准确地找到了正确的源位置;(b)传统的 RAP-MUSIC 无法做到这一点,因为它受到非相互作用源的高度影响;(c)第二种方法正确地识别了与参考相互作用的那些源。这些方法也应用于运动范式的真实数据,导致四个相互作用的源在感觉运动区域的定位。