Suppr超能文献

3Drefine:通过优化氢键网络和原子级能量最小化实现一致的蛋白质结构精修。

3Drefine: consistent protein structure refinement by optimizing hydrogen bonding network and atomic-level energy minimization.

机构信息

Department of Computer Science, University of Missouri, Columbia, Missouri 65211, USA.

出版信息

Proteins. 2013 Jan;81(1):119-31. doi: 10.1002/prot.24167. Epub 2012 Sep 26.

Abstract

One of the major limitations of computational protein structure prediction is the deviation of predicted models from their experimentally derived true, native structures. The limitations often hinder the possibility of applying computational protein structure prediction methods in biochemical assignment and drug design that are very sensitive to structural details. Refinement of these low-resolution predicted models to high-resolution structures close to the native state, however, has proven to be extremely challenging. Thus, protein structure refinement remains a largely unsolved problem. Critical assessment of techniques for protein structure prediction (CASP) specifically indicated that most predictors participating in the refinement category still did not consistently improve model quality. Here, we propose a two-step refinement protocol, called 3Drefine, to consistently bring the initial model closer to the native structure. The first step is based on optimization of hydrogen bonding (HB) network and the second step applies atomic-level energy minimization on the optimized model using a composite physics and knowledge-based force fields. The approach has been evaluated on the CASP benchmark data and it exhibits consistent improvement over the initial structure in both global and local structural quality measures. 3Drefine method is also computationally inexpensive, consuming only few minutes of CPU time to refine a protein of typical length (300 residues). 3Drefine web server is freely available at http://sysbio.rnet.missouri.edu/3Drefine/.

摘要

计算蛋白质结构预测的主要局限性之一是预测模型与其实验得出的真实天然结构之间的偏差。这些局限性常常阻碍了计算蛋白质结构预测方法在对结构细节非常敏感的生化任务和药物设计中的应用。然而,将这些低分辨率的预测模型细化为接近天然状态的高分辨率结构非常具有挑战性。因此,蛋白质结构细化仍然是一个尚未解决的主要问题。蛋白质结构预测技术的关键评估(CASP)特别指出,参与细化类别的大多数预测器仍然没有一致地提高模型质量。在这里,我们提出了一种两步细化方案,称为 3Drefine,以一致地将初始模型与天然结构更接近。第一步基于氢键(HB)网络的优化,第二步在优化后的模型上应用原子级能量最小化,使用复合物理和基于知识的力场。该方法已在 CASP 基准数据上进行了评估,在全局和局部结构质量度量方面,它都表现出对初始结构的一致改进。3Drefine 方法计算成本低廉,只需几分钟的 CPU 时间即可细化典型长度(300 个残基)的蛋白质。3Drefine 网络服务器可在 http://sysbio.rnet.missouri.edu/3Drefine/ 免费获得。

相似文献

10
Protein structure refinement by optimization.通过优化进行蛋白质结构细化。
Proteins. 2015 Sep;83(9):1616-24. doi: 10.1002/prot.24846. Epub 2015 Jul 21.

引用本文的文献

本文引用的文献

2
Assessment of protein structure refinement in CASP9.评估 CASP9 中的蛋白质结构精修。
Proteins. 2011;79 Suppl 10(Suppl 10):74-90. doi: 10.1002/prot.23131. Epub 2011 Aug 30.
4
How significant is a protein structure similarity with TM-score = 0.5?蛋白质结构相似度 TM 值为 0.5 有多大意义?
Bioinformatics. 2010 Apr 1;26(7):889-95. doi: 10.1093/bioinformatics/btq066. Epub 2010 Feb 17.
6
MolProbity: all-atom structure validation for macromolecular crystallography.MolProbity:用于大分子晶体学的全原子结构验证
Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):12-21. doi: 10.1107/S0907444909042073. Epub 2009 Dec 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验