Département de Médecine Nucléaire et de Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
Proc Natl Acad Sci U S A. 2012 Sep 18;109(38):E2508-13. doi: 10.1073/pnas.1116286109. Epub 2012 Aug 27.
Since the invention of cancer radiotherapy, its primary goal has been to maximize lethal radiation doses to the tumor volume while keeping the dose to surrounding healthy tissues at zero. Sadly, conventional radiation sources (γ or X rays, electrons) used for decades, including multiple or modulated beams, inevitably deposit the majority of their dose in front or behind the tumor, thus damaging healthy tissue and causing secondary cancers years after treatment. Even the most recent pioneering advances in costly proton or carbon ion therapies can not completely avoid dose buildup in front of the tumor volume. Here we show that this ultimate goal of radiotherapy is yet within our reach: Using intense ultra-short infrared laser pulses we can now deposit a very large energy dose at unprecedented microscopic dose rates (up to 10(11) Gy/s) deep inside an adjustable, well-controlled macroscopic volume, without any dose deposit in front or behind the target volume. Our infrared laser pulses produce high density avalanches of low energy electrons via laser filamentation, a phenomenon that results in a spatial energy density and temporal dose rate that both exceed by orders of magnitude any values previously reported even for the most intense clinical radiotherapy systems. Moreover, we show that (i) the type of final damage and its mechanisms in aqueous media, at the molecular and biomolecular level, is comparable to that of conventional ionizing radiation, and (ii) at the tumor tissue level in an animal cancer model, the laser irradiation method shows clear therapeutic benefits.
自癌症放射疗法发明以来,其主要目标一直是在将肿瘤体积的致死辐射剂量最大化的同时,将剂量保持在周围健康组织为零。遗憾的是,几十年来使用的常规辐射源(γ 射线或 X 射线、电子),包括多束或调制束,不可避免地将其大部分剂量沉积在肿瘤的前面或后面,从而损伤健康组织,并在治疗后数年引发继发性癌症。即使是最近在昂贵的质子或碳离子治疗方面的开创性进展也不能完全避免肿瘤体积前面的剂量积累。在这里,我们表明,放射疗法的这一最终目标仍然可以实现:我们现在可以使用高强度超短红外激光脉冲,以空前的微观剂量率(高达 10(11)Gy/s)在可调节、可控的宏观体积深处沉积非常大的能量剂量,而目标体积的前后没有任何剂量沉积。我们的红外激光脉冲通过激光细丝化产生高密度的低能量电子雪崩,这种现象导致的空间能量密度和时间剂量率都超过了以前报道的任何值,即使是最强烈的临床放射治疗系统也是如此。此外,我们还表明,(i)在水介质中,在分子和生物分子水平上,最终损伤的类型及其机制与传统的电离辐射相当,(ii)在动物癌症模型中的肿瘤组织水平上,激光辐照方法显示出明显的治疗益处。