Department of Condensed Matter Physics, Brookhaven National Laboratory, Upton, New York 11973, USA.
Nat Commun. 2012;3:1028. doi: 10.1038/ncomms2025.
Spin-transfer torques offer great promise for the development of spin-based devices. The effects of spin-transfer torques are typically analysed in terms of adiabatic and non-adiabatic contributions. Currently, a comprehensive interpretation of the non-adiabatic term remains elusive, with suggestions that it may arise from universal effects related to dissipation processes in spin dynamics, while other studies indicate a strong influence from the symmetry of magnetization gradients. Here we show that enhanced magnetic imaging under dynamic excitation can be used to differentiate between non-adiabatic spin-torque and extraneous influences. We combine Lorentz microscopy with gigahertz excitations to map the orbit of a magnetic vortex core with <5 nm resolution. Imaging of the gyrotropic motion reveals subtle changes in the ellipticity, amplitude and tilt of the orbit as the vortex is driven through resonance, providing a robust method to determine the non-adiabatic spin torque parameter β=0.15±0.02 with unprecedented precision, independent of external effects.
自旋转移力矩在自旋基设备的发展中具有巨大的应用前景。通常可以根据绝热和非绝热贡献来分析自旋转移力矩的效应。目前,对非绝热项的全面解释仍然难以捉摸,有人认为它可能来自与自旋动力学耗散过程相关的普遍效应,而其他研究则表明,它受到磁各向异性梯度对称性的强烈影响。在这里,我们表明,在动态激励下增强的磁成像可用于区分非绝热自旋扭矩和外部影响。我们结合洛伦兹显微镜和千兆赫激发,以 <5nm 的分辨率绘制磁涡旋核的轨道。对旋度运动的成像显示,当涡旋通过共振驱动时,轨道的椭圆度、幅度和倾斜度会发生微妙变化,这为确定非绝热自旋扭矩参数β=0.15±0.02 提供了一种稳健的方法,该方法具有前所未有的精度,且不受外部影响。