Suppr超能文献

预测和表征用于代谢疾病和癌症的选择性多种药物治疗方法。

Predicting and characterizing selective multiple drug treatments for metabolic diseases and cancer.

作者信息

Facchetti Giuseppe, Zampieri Mattia, Altafini Claudio

机构信息

Statistical and Biological Physics Department, SISSA-International School for Advanced Studies, Via Bonomea 265, 34136 Trieste, Italy.

出版信息

BMC Syst Biol. 2012 Aug 29;6:115. doi: 10.1186/1752-0509-6-115.

Abstract

BACKGROUND

In the field of drug discovery, assessing the potential of multidrug therapies is a difficult task because of the combinatorial complexity (both theoretical and experimental) and because of the requirements on the selectivity of the therapy. To cope with this problem, we have developed a novel method for the systematic in silico investigation of synergistic effects of currently available drugs on genome-scale metabolic networks.

RESULTS

The algorithm finds the optimal combination of drugs which guarantees the inhibition of an objective function, while minimizing the side effect on the other cellular processes. Two different applications are considered: finding drug synergisms for human metabolic diseases (like diabetes, obesity and hypertension) and finding antitumoral drug combinations with minimal side effect on the normal human cell. The results we obtain are consistent with some of the available therapeutic indications and predict new multiple drug treatments. A cluster analysis on all possible interactions among the currently available drugs indicates a limited variety on the metabolic targets for the approved drugs.

CONCLUSION

The in silico prediction of drug synergisms can represent an important tool for the repurposing of drugs in a realistic perspective which considers also the selectivity of the therapy. Moreover, for a more profitable exploitation of drug-drug interactions, we have shown that also experimental drugs which have a different mechanism of action can be reconsider as potential ingredients of new multicompound therapeutic indications. Needless to say the clues provided by a computational study like ours need in any case to be thoroughly evaluated experimentally.

摘要

背景

在药物研发领域,评估多药疗法的潜力是一项艰巨的任务,这是由于组合复杂性(包括理论和实验方面)以及对疗法选择性的要求。为了解决这个问题,我们开发了一种新颖的方法,用于在计算机上系统地研究现有药物对基因组规模代谢网络的协同作用。

结果

该算法能找到药物的最佳组合,既能保证抑制目标功能,又能使对其他细胞过程的副作用最小化。我们考虑了两种不同的应用:寻找针对人类代谢疾病(如糖尿病、肥胖症和高血压)的药物协同作用,以及寻找对正常人类细胞副作用最小的抗肿瘤药物组合。我们获得的结果与一些现有的治疗指征一致,并预测了新的多药治疗方案。对现有药物之间所有可能相互作用的聚类分析表明,已批准药物的代谢靶点种类有限。

结论

从考虑疗法选择性的现实角度来看,计算机模拟预测药物协同作用可成为药物重新利用的重要工具。此外,为了更有效地利用药物 - 药物相互作用,我们已经表明,具有不同作用机制的实验性药物也可被重新视为新的多化合物治疗指征的潜在成分。不用说,像我们这样的计算研究提供的线索无论如何都需要通过实验进行全面评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac99/3744170/fbddbe40f78e/1752-0509-6-115-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验