Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA.
Phys Med Biol. 2012 Sep 21;57(18):5765-75. doi: 10.1088/0031-9155/57/18/5765. Epub 2012 Sep 5.
Focusing heat delivery while minimizing collateral damage to normal tissues is essential for successful nanoparticle-mediated laser-induced thermal cancer therapy. We present thermal maps obtained via magnetic resonance imaging characterizing laser heating of a phantom tissue containing a multiwalled carbon nanotube inclusion. The data demonstrate that heating continuously over tens of seconds leads to poor localization (∼ 0.5 cm) of the elevated temperature region. By contrast, for the same energy input, heat localization can be reduced to the millimeter rather than centimeter range by increasing the laser power and shortening the pulse duration. The experimental data can be well understood within a simple diffusive heat conduction model. Analysis of the model indicates that to achieve 1 mm or better resolution, heating pulses of ∼2 s or less need to be used with appropriately higher heating power. Modeling these data using a diffusive heat conduction analysis predicts parameters for optimal targeted delivery of heat for ablative therapy.
聚焦热量传递,同时将正常组织的附带损伤降至最低,对于成功实现纳米颗粒介导的激光诱导热疗癌症至关重要。我们展示了通过磁共振成像获得的热图,该热图描述了含有多壁碳纳米管包含物的虚拟组织的激光加热情况。数据表明,连续数十秒的加热会导致高温区域的定位不良(约 0.5 厘米)。相比之下,对于相同的能量输入,如果增加激光功率并缩短脉冲持续时间,则可以将热定位缩小到毫米而不是厘米范围。实验数据可以在简单的扩散热传导模型中得到很好的理解。模型分析表明,为了实现 1 毫米或更好的分辨率,需要使用持续时间约为 2 秒或更短的加热脉冲,并结合适当更高的加热功率。使用扩散热传导分析对这些数据进行建模,可以预测用于消融治疗的最佳靶向热量传递参数。