Suppr超能文献

果蝇乙酰辅酶 A 羧化酶维持脂肪酸依赖性远程信号以防水呼吸系统。

Drosophila melanogaster Acetyl-CoA-carboxylase sustains a fatty acid-dependent remote signal to waterproof the respiratory system.

机构信息

CNRS, Centre de Génétique Moléculaire, UPR 3404, Gif-sur-Yvette, France.

出版信息

PLoS Genet. 2012;8(8):e1002925. doi: 10.1371/journal.pgen.1002925. Epub 2012 Aug 30.

Abstract

Fatty acid (FA) metabolism plays a central role in body homeostasis and related diseases. Thus, FA metabolic enzymes are attractive targets for drug therapy. Mouse studies on Acetyl-coenzymeA-carboxylase (ACC), the rate-limiting enzyme for FA synthesis, have highlighted its homeostatic role in liver and adipose tissue. We took advantage of the powerful genetics of Drosophila melanogaster to investigate the role of the unique Drosophila ACC homologue in the fat body and the oenocytes. The fat body accomplishes hepatic and storage functions, whereas the oenocytes are proposed to produce the cuticular lipids and to contribute to the hepatic function. RNA-interfering disruption of ACC in the fat body does not affect viability but does result in a dramatic reduction in triglyceride storage and a concurrent increase in glycogen accumulation. These metabolic perturbations further highlight the role of triglyceride and glycogen storage in controlling circulatory sugar levels, thereby validating Drosophila as a relevant model to explore the tissue-specific function of FA metabolic enzymes. In contrast, ACC disruption in the oenocytes through RNA-interference or tissue-targeted mutation induces lethality, as does oenocyte ablation. Surprisingly, this lethality is associated with a failure in the watertightness of the spiracles-the organs controlling the entry of air into the trachea. At the cellular level, we have observed that, in defective spiracles, lipids fail to transfer from the spiracular gland to the point of air entry. This phenotype is caused by disrupted synthesis of a putative very-long-chain-FA (VLCFA) within the oenocytes, which ultimately results in a lethal anoxic issue. Preventing liquid entry into respiratory systems is a universal issue for air-breathing animals. Here, we have shown that, in Drosophila, this process is controlled by a putative VLCFA produced within the oenocytes.

摘要

脂肪酸(FA)代谢在体内稳态和相关疾病中起着核心作用。因此,FA 代谢酶是药物治疗的有吸引力的靶点。乙酰辅酶 A 羧化酶(ACC)是 FA 合成的限速酶,对其进行的小鼠研究强调了其在肝脏和脂肪组织中的稳态作用。我们利用黑腹果蝇强大的遗传学优势,研究了独特的果蝇 ACC 同源物在脂肪体和性腺中的作用。脂肪体完成肝脏和储存功能,而性腺被认为产生表皮脂质并有助于肝脏功能。RNA 干扰破坏脂肪体中的 ACC 不会影响活力,但会导致甘油三酯储存显著减少,同时糖原积累增加。这些代谢扰动进一步强调了甘油三酯和糖原储存在控制循环糖水平中的作用,从而验证了果蝇作为探索 FA 代谢酶组织特异性功能的相关模型。相比之下,通过 RNA 干扰或组织靶向突变破坏性腺中的 ACC 会导致致死性,性腺消融也是如此。令人惊讶的是,这种致死性与气门的不透气性有关,气门是控制空气进入气管的器官。在细胞水平上,我们观察到,在有缺陷的气门中,脂质不能从气门腺转移到空气进入点。这种表型是由于性腺中推定的长链脂肪酸(VLCFA)合成受损引起的,最终导致致命的缺氧问题。防止液体进入呼吸系统是所有呼吸空气动物的普遍问题。在这里,我们表明,在果蝇中,这个过程是由性腺内产生的推定的 VLCFA 控制的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7714/3431307/5c8752b903c9/pgen.1002925.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验