Suppr超能文献

一种新颖性检测的内部模型架构:对小脑和丘脑中感觉处理作用的启示。

An internal model architecture for novelty detection: implications for cerebellar and collicular roles in sensory processing.

机构信息

Department of Psychology, University of Sheffield, Sheffield, United Kingdom.

出版信息

PLoS One. 2012;7(9):e44560. doi: 10.1371/journal.pone.0044560. Epub 2012 Sep 5.

Abstract

The cerebellum is thought to implement internal models for sensory prediction, but details of the underlying circuitry are currently obscure. We therefore investigated a specific example of internal-model based sensory prediction, namely detection of whisker contacts during whisking. Inputs from the vibrissae in rats can be affected by signals generated by whisker movement, a phenomenon also observable in whisking robots. Robot novelty-detection can be improved by adaptive noise-cancellation, in which an adaptive filter learns a forward model of the whisker plant that allows the sensory effects of whisking to be predicted and thus subtracted from the noisy sensory input. However, the forward model only uses information from an efference copy of the whisking commands. Here we show that the addition of sensory information from the whiskers allows the adaptive filter to learn a more complex internal model that performs more robustly than the forward model, particularly when the whisking-induced interference has a periodic structure. We then propose a neural equivalent of the circuitry required for adaptive novelty-detection in the robot, in which the role of the adaptive filter is carried out by the cerebellum, with the comparison of its output (an estimate of the self-induced interference) and the original vibrissal signal occurring in the superior colliculus, a structure noted for its central role in novelty detection. This proposal makes a specific prediction concerning the whisker-related functions of a region in cerebellar cortical zone A(2) that in rats receives climbing fibre input from the superior colliculus (via the inferior olive). This region has not been observed in non-whisking animals such as cats and primates, and its functional role in vibrissal processing has hitherto remained mysterious. Further investigation of this system may throw light on how cerebellar-based internal models could be used in broader sensory, motor and cognitive contexts.

摘要

小脑被认为实现了用于感觉预测的内部模型,但基础电路的细节目前还不清楚。因此,我们研究了基于内部模型的感觉预测的一个具体例子,即检测在刷动过程中的胡须接触。老鼠的触须输入可以受到由触须运动产生的信号的影响,这种现象在刷动机器人中也可以观察到。机器人的新颖性检测可以通过自适应噪声消除来提高,其中自适应滤波器学习触须植物的前向模型,允许预测触须运动的感觉效应,并因此从嘈杂的感觉输入中减去。然而,前向模型仅使用来自触须运动命令的传出副本的信息。在这里,我们表明,从触须添加感觉信息允许自适应滤波器学习更复杂的内部模型,该模型比前向模型更稳健,特别是当刷动引起的干扰具有周期性结构时。然后,我们提出了机器人中自适应新颖性检测所需的电路的神经等效物,其中自适应滤波器的作用由小脑完成,其输出(对自引起的干扰的估计)与原始触须信号在高级视丘,一个以其在新颖性检测中的核心作用而闻名的结构中进行比较。这个建议对小脑皮质区 A(2)中与触须相关的功能提出了一个具体的预测,在大鼠中,该区域从高级视丘(通过下橄榄核)接收来自攀爬纤维的输入。在非刷动动物如猫和灵长类动物中没有观察到这个区域,其在触须处理中的功能作用迄今仍然神秘。对这个系统的进一步研究可能会揭示基于小脑的内部模型如何在更广泛的感觉、运动和认知环境中使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b739/3434152/47bfaaac004d/pone.0044560.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验