Suppr超能文献

KsbC,一种粘细菌 Kitasatospora setae 的丁酰内酯类自体调控受体同源物,对次级代谢和形态发育的多效控制。

Pleiotropic control of secondary metabolism and morphological development by KsbC, a butyrolactone autoregulator receptor homologue in Kitasatospora setae.

机构信息

International Center for Biotechnology, Osaka University, Suita, Osaka, Japan.

出版信息

Appl Environ Microbiol. 2012 Nov;78(22):8015-24. doi: 10.1128/AEM.02355-12. Epub 2012 Sep 7.

Abstract

The γ-butyrolactone autoregulator signaling cascades have been shown to control secondary metabolism and/or morphological development among many Streptomyces species. However, the conservation and variation of the regulatory systems among actinomycetes remain to be clarified. The genome sequence of Kitasatospora setae, which also belongs to the family Streptomycetaceae containing the genus Streptomyces, has revealed the presence of three homologues of the autoregulator receptor: KsbA, which has previously been confirmed to be involved only in secondary metabolism; KsbB; and KsbC. We describe here the characterization of ksbC, whose regulatory cluster closely resembles the Streptomyces virginiae barA locus responsible for the autoregulator signaling cascade. Deletion of the gene ksbC resulted in lowered production of bafilomycin and a defect of aerial mycelium formation, together with the early and enhanced production of a novel β-carboline alkaloid named kitasetaline. A putative kitasetaline biosynthetic gene cluster was identified, and its expression in a heterologous host led to the production of kitasetaline together with JBIR-133, the production of which is also detected in the ksbC disruptant, and JBIR-134 as novel β-carboline alkaloids, indicating that these genes were biosynthetic genes for β-carboline alkaloid and thus are the first such genes to be discovered in bacteria.

摘要

γ-丁内酯自动调节信号级联已被证明可以控制许多链霉菌属物种的次级代谢和/或形态发育。然而,放线菌中调节系统的保守性和变异性仍有待阐明。Kitasatospora setae 的基因组序列也属于链霉菌科,其中包含链霉菌属,该基因组序列揭示了三种自动调节受体同源物的存在:KsbA,先前已证实其仅参与次级代谢;KsbB;和 KsbC。我们在这里描述了 ksbC 的特征,其调节簇与负责自动调节信号级联的 Streptomyces virginiae barA 基因座非常相似。基因 ksbC 的缺失导致巴弗洛霉素产量降低,气生菌丝形成缺陷,同时早期和增强产生一种新型 β-咔啉生物碱,命名为 kitasetaline。鉴定了一个推定的 kitasetaline 生物合成基因簇,其在异源宿主中的表达导致 kitasetaline 的产生,以及 JBIR-133 的产生,在 ksbC 缺失突变体中也检测到 JBIR-133 的产生,以及 JBIR-134 作为新型 β-咔啉生物碱,表明这些基因是 β-咔啉生物碱的生物合成基因,因此是在细菌中首次发现的此类基因。

相似文献

5
Kitasetaline, a novel β-carboline alkaloid from Kitasatospora setae NBRC 14216T.
J Biosci Bioeng. 2012 Jul;114(1):56-8. doi: 10.1016/j.jbiosc.2012.02.027. Epub 2012 May 5.
7
Identification of biosynthetic genes for the β-carboline alkaloid kitasetaline and production of the fluorinated derivatives by heterologous expression.
J Ind Microbiol Biotechnol. 2019 May;46(5):739-750. doi: 10.1007/s10295-019-02151-z. Epub 2019 Feb 20.
9
Engineered production of kitasetalic acid, a new tetrahydro-β-carboline with the ability to suppress glucose-regulated protein synthesis.
J Antibiot (Tokyo). 2018 Oct;71(10):854-861. doi: 10.1038/s41429-018-0074-7. Epub 2018 Jul 4.
10
Regulation of production of the blue pigment indigoidine by the pseudo γ-butyrolactone receptor FarR2 in Streptomyces lavendulae FRI-5.
J Biosci Bioeng. 2016 Apr;121(4):372-9. doi: 10.1016/j.jbiosc.2015.08.013. Epub 2015 Sep 12.

引用本文的文献

2
Design and validation of a PCR screen for γ-butyrolactone-like regulatory systems in .
Access Microbiol. 2023 Sep 12;5(9). doi: 10.1099/acmi.0.000661.v3. eCollection 2023.
6
Expansion of Gamma-Butyrolactone Signaling Molecule Biosynthesis to Phosphotriester Natural Products.
ACS Chem Biol. 2020 Dec 18;15(12):3253-3261. doi: 10.1021/acschembio.0c00824. Epub 2020 Nov 24.
7
SrrB, a Pseudo-Receptor Protein, Acts as a Negative Regulator for Lankacidin and Lankamycin Production in .
Front Microbiol. 2020 Jun 9;11:1089. doi: 10.3389/fmicb.2020.01089. eCollection 2020.
8
Nonocarbolines A-E, -Carboline Antibiotics Produced by the Rare Actinobacterium sp. from Indonesia.
Antibiotics (Basel). 2020 Mar 17;9(3):126. doi: 10.3390/antibiotics9030126.
9
Identification of biosynthetic genes for the β-carboline alkaloid kitasetaline and production of the fluorinated derivatives by heterologous expression.
J Ind Microbiol Biotechnol. 2019 May;46(5):739-750. doi: 10.1007/s10295-019-02151-z. Epub 2019 Feb 20.
10
Copper amine oxidases catalyze the oxidative deamination and hydrolysis of cyclic imines.
Nat Commun. 2019 Jan 24;10(1):413. doi: 10.1038/s41467-018-08280-w.

本文引用的文献

1
Kitasetaline, a novel β-carboline alkaloid from Kitasatospora setae NBRC 14216T.
J Biosci Bioeng. 2012 Jul;114(1):56-8. doi: 10.1016/j.jbiosc.2012.02.027. Epub 2012 May 5.
2
Avenolide, a Streptomyces hormone controlling antibiotic production in Streptomyces avermitilis.
Proc Natl Acad Sci U S A. 2011 Sep 27;108(39):16410-5. doi: 10.1073/pnas.1113908108. Epub 2011 Sep 19.
5
Genome sequence of Kitasatospora setae NBRC 14216T: an evolutionary snapshot of the family Streptomycetaceae.
DNA Res. 2010 Dec;17(6):393-406. doi: 10.1093/dnares/dsq026. Epub 2010 Nov 8.
6
Deletion of a regulatory gene within the cpk gene cluster reveals novel antibacterial activity in Streptomyces coelicolor A3(2).
Microbiology (Reading). 2010 Aug;156(Pt 8):2343-2353. doi: 10.1099/mic.0.038281-0. Epub 2010 May 6.
7
Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism.
Proc Natl Acad Sci U S A. 2010 Feb 9;107(6):2646-51. doi: 10.1073/pnas.0914833107. Epub 2010 Jan 25.
8
Control of secondary metabolism by farX, which is involved in the gamma-butyrolactone biosynthesis of Streptomyces lavendulae FRI-5.
Arch Microbiol. 2010 Mar;192(3):211-20. doi: 10.1007/s00203-010-0550-3. Epub 2010 Feb 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验