International Center for Biotechnology, Osaka University, Suita, Osaka, Japan.
Appl Environ Microbiol. 2012 Nov;78(22):8015-24. doi: 10.1128/AEM.02355-12. Epub 2012 Sep 7.
The γ-butyrolactone autoregulator signaling cascades have been shown to control secondary metabolism and/or morphological development among many Streptomyces species. However, the conservation and variation of the regulatory systems among actinomycetes remain to be clarified. The genome sequence of Kitasatospora setae, which also belongs to the family Streptomycetaceae containing the genus Streptomyces, has revealed the presence of three homologues of the autoregulator receptor: KsbA, which has previously been confirmed to be involved only in secondary metabolism; KsbB; and KsbC. We describe here the characterization of ksbC, whose regulatory cluster closely resembles the Streptomyces virginiae barA locus responsible for the autoregulator signaling cascade. Deletion of the gene ksbC resulted in lowered production of bafilomycin and a defect of aerial mycelium formation, together with the early and enhanced production of a novel β-carboline alkaloid named kitasetaline. A putative kitasetaline biosynthetic gene cluster was identified, and its expression in a heterologous host led to the production of kitasetaline together with JBIR-133, the production of which is also detected in the ksbC disruptant, and JBIR-134 as novel β-carboline alkaloids, indicating that these genes were biosynthetic genes for β-carboline alkaloid and thus are the first such genes to be discovered in bacteria.
γ-丁内酯自动调节信号级联已被证明可以控制许多链霉菌属物种的次级代谢和/或形态发育。然而,放线菌中调节系统的保守性和变异性仍有待阐明。Kitasatospora setae 的基因组序列也属于链霉菌科,其中包含链霉菌属,该基因组序列揭示了三种自动调节受体同源物的存在:KsbA,先前已证实其仅参与次级代谢;KsbB;和 KsbC。我们在这里描述了 ksbC 的特征,其调节簇与负责自动调节信号级联的 Streptomyces virginiae barA 基因座非常相似。基因 ksbC 的缺失导致巴弗洛霉素产量降低,气生菌丝形成缺陷,同时早期和增强产生一种新型 β-咔啉生物碱,命名为 kitasetaline。鉴定了一个推定的 kitasetaline 生物合成基因簇,其在异源宿主中的表达导致 kitasetaline 的产生,以及 JBIR-133 的产生,在 ksbC 缺失突变体中也检测到 JBIR-133 的产生,以及 JBIR-134 作为新型 β-咔啉生物碱,表明这些基因是 β-咔啉生物碱的生物合成基因,因此是在细菌中首次发现的此类基因。