Suppr超能文献

一种用于全切片图像分析的高效计算框架:在滤泡性淋巴瘤免疫组织化学中的应用。

An Efficient Computational Framework for the Analysis of Whole Slide Images: Application to Follicular Lymphoma Immunohistochemistry.

作者信息

Samsi Siddharth, Krishnamurthy Ashok K, Gurcan Metin N

机构信息

Ohio Supercomputer Center.

出版信息

J Comput Sci. 2012 Sep 1;3(5):269-279. doi: 10.1016/j.jocs.2012.01.009. Epub 2012 Mar 6.

Abstract

Follicular Lymphoma (FL) is one of the most common non-Hodgkin Lymphoma in the United States. Diagnosis and grading of FL is based on the review of histopathological tissue sections under a microscope and is influenced by human factors such as fatigue and reader bias. Computer-aided image analysis tools can help improve the accuracy of diagnosis and grading and act as another tool at the pathologist's disposal. Our group has been developing algorithms for identifying follicles in immunohistochemical images. These algorithms have been tested and validated on small images extracted from whole slide images. However, the use of these algorithms for analyzing the entire whole slide image requires significant changes to the processing methodology since the images are relatively large (on the order of 100k × 100k pixels). In this paper we discuss the challenges involved in analyzing whole slide images and propose potential computational methodologies for addressing these challenges. We discuss the use of parallel computing tools on commodity clusters and compare performance of the serial and parallel implementations of our approach.

摘要

滤泡性淋巴瘤(FL)是美国最常见的非霍奇金淋巴瘤之一。FL的诊断和分级基于显微镜下对组织病理学切片的检查,且受疲劳和阅片者偏差等人为因素影响。计算机辅助图像分析工具有助于提高诊断和分级的准确性,并成为病理学家可用的另一工具。我们的团队一直在开发用于识别免疫组化图像中滤泡的算法。这些算法已在从全切片图像中提取的小图像上进行了测试和验证。然而,将这些算法用于分析整个全切片图像需要对处理方法进行重大改变,因为图像相对较大(约为100k×100k像素)。在本文中,我们讨论了分析全切片图像所涉及的挑战,并提出了解决这些挑战的潜在计算方法。我们讨论了在商用集群上使用并行计算工具,并比较了我们方法的串行和并行实现的性能。

相似文献

1
2
A general framework for the segmentation of follicular lymphoma virtual slides.
Comput Med Imaging Graph. 2012 Sep;36(6):442-51. doi: 10.1016/j.compmedimag.2012.05.003. Epub 2012 Jun 18.
3
Inter-reader variability in follicular lymphoma grading: Conventional and digital reading.
J Pathol Inform. 2013 Oct 29;4:30. doi: 10.4103/2153-3539.120747. eCollection 2013.
4
Time-efficient sparse analysis of histopathological whole slide images.
Comput Med Imaging Graph. 2011 Oct-Dec;35(7-8):579-91. doi: 10.1016/j.compmedimag.2010.11.009. Epub 2010 Dec 10.
5
Detection of follicles from IHC-stained slides of follicular lymphoma using iterative watershed.
IEEE Trans Biomed Eng. 2010 Oct;57(10):2609-12. doi: 10.1109/TBME.2010.2058111. Epub 2010 Jul 15.
6
Image database analysis of Hodgkin lymphoma.
Comput Biol Chem. 2013 Oct;46:1-7. doi: 10.1016/j.compbiolchem.2013.04.003. Epub 2013 May 10.
8
Bioinformatics analysis of whole slide images reveals significant neighborhood preferences of tumor cells in Hodgkin lymphoma.
PLoS Comput Biol. 2020 Jan 21;16(1):e1007516. doi: 10.1371/journal.pcbi.1007516. eCollection 2020 Jan.
9
A parallel solution for high resolution histological image analysis.
Comput Methods Programs Biomed. 2012 Oct;108(1):388-401. doi: 10.1016/j.cmpb.2012.03.007. Epub 2012 Apr 20.
10

引用本文的文献

1
Artificial Intelligence in Lymphoma Histopathology: Systematic Review.
J Med Internet Res. 2025 Feb 14;27:e62851. doi: 10.2196/62851.
2
Artificial Intelligence and Digital Microscopy Applications in Diagnostic Hematopathology.
Cancers (Basel). 2020 Mar 26;12(4):797. doi: 10.3390/cancers12040797.
3
Informatics Approaches to Address New Challenges in the Classification of Lymphoid Malignancies.
JCO Clin Cancer Inform. 2018;2. doi: 10.1200/CCI.17.00039. Epub 2018 Feb 9.
4
Classification of follicular lymphoma: the effect of computer aid on pathologists grading.
BMC Med Inform Decis Mak. 2015 Dec 30;15:115. doi: 10.1186/s12911-015-0235-6.
6
Automated grading of renal cell carcinoma using whole slide imaging.
J Pathol Inform. 2014 Jul 30;5(1):23. doi: 10.4103/2153-3539.137726. eCollection 2014.
7
Mapping stain distribution in pathology slides using whole slide imaging.
J Pathol Inform. 2014 Jan 31;5(1):1. doi: 10.4103/2153-3539.126140. eCollection 2014.
8
Pathology imaging informatics for quantitative analysis of whole-slide images.
J Am Med Inform Assoc. 2013 Nov-Dec;20(6):1099-108. doi: 10.1136/amiajnl-2012-001540. Epub 2013 Aug 19.

本文引用的文献

1
Computer-aided prognosis: predicting patient and disease outcome via quantitative fusion of multi-scale, multi-modal data.
Comput Med Imaging Graph. 2011 Oct-Dec;35(7-8):506-14. doi: 10.1016/j.compmedimag.2011.01.008. Epub 2011 Feb 17.
2
Histopathological image analysis: a review.
IEEE Rev Biomed Eng. 2009;2:147-71. doi: 10.1109/RBME.2009.2034865. Epub 2009 Oct 30.
3
Detection of follicles from IHC-stained slides of follicular lymphoma using iterative watershed.
IEEE Trans Biomed Eng. 2010 Oct;57(10):2609-12. doi: 10.1109/TBME.2010.2058111. Epub 2010 Jul 15.
4
Computer-aided Prognosis of Neuroblastoma on Whole-slide Images: Classification of Stromal Development.
Pattern Recognit. 2009 Jun;42(6):1093-1103. doi: 10.1016/j.patcog.2008.08.027.
5
Stroma classification for neuroblastoma on graphics processors.
Int J Data Min Bioinform. 2009;3(3):280-98. doi: 10.1504/ijdmb.2009.026702.
6
Computer-aided detection of prostate cancer on tissue sections.
Appl Immunohistochem Mol Morphol. 2009 Oct;17(5):442-50. doi: 10.1097/PAI.0b013e31819e6d65.
8
ParaKMeans: Implementation of a parallelized K-means algorithm suitable for general laboratory use.
BMC Bioinformatics. 2008 Apr 16;9:200. doi: 10.1186/1471-2105-9-200.
9
Morphological grayscale reconstruction in image analysis: applications and efficient algorithms.
IEEE Trans Image Process. 1993;2(2):176-201. doi: 10.1109/83.217222.
10
Computer-aided detection of breast cancer nuclei.
IEEE Trans Inf Technol Biomed. 1997 Jun;1(2):128-40. doi: 10.1109/4233.640655.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验