Suppr超能文献

基于注册的鼠类 4D 心脏 micro-CT 数据的对称归一化分割。

Registration-based segmentation of murine 4D cardiac micro-CT data using symmetric normalization.

机构信息

Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC 27710, USA.

出版信息

Phys Med Biol. 2012 Oct 7;57(19):6125-45. doi: 10.1088/0031-9155/57/19/6125. Epub 2012 Sep 13.

Abstract

Micro-CT can play an important role in preclinical studies of cardiovascular disease because of its high spatial and temporal resolution. Quantitative analysis of 4D cardiac images requires segmentation of the cardiac chambers at each time point, an extremely time consuming process if done manually. To improve throughput this study proposes a pipeline for registration-based segmentation and functional analysis of 4D cardiac micro-CT data in the mouse. Following optimization and validation using simulations, the pipeline was applied to in vivo cardiac micro-CT data corresponding to ten cardiac phases acquired in C57BL/6 mice (n = 5). After edge-preserving smoothing with a novel adaptation of 4D bilateral filtration, one phase within each cardiac sequence was manually segmented. Deformable registration was used to propagate these labels to all other cardiac phases for segmentation. The volumes of each cardiac chamber were calculated and used to derive stroke volume, ejection fraction, cardiac output, and cardiac index. Dice coefficients and volume accuracies were used to compare manual segmentations of two additional phases with their corresponding propagated labels. Both measures were, on average, >0.90 for the left ventricle and >0.80 for the myocardium, the right ventricle, and the right atrium, consistent with trends in inter- and intra-segmenter variability. Segmentation of the left atrium was less reliable. On average, the functional metrics of interest were underestimated by 6.76% or more due to systematic label propagation errors around atrioventricular valves; however, execution of the pipeline was 80% faster than performing analogous manual segmentation of each phase.

摘要

微计算机断层扫描(Micro-CT)因其具有较高的空间和时间分辨率,在心血管疾病的临床前研究中可发挥重要作用。对 4D 心脏图像进行定量分析需要在每个时间点对心脏腔室进行分割,如果手动分割则非常耗时。为了提高效率,本研究提出了一种基于配准的 4D 心脏 micro-CT 数据分割和功能分析流水线,用于小鼠。在使用模拟进行优化和验证后,将该流水线应用于对应于 C57BL/6 小鼠 10 个心脏相位的体内心脏 micro-CT 数据(n=5)。在用一种新颖的 4D 双边滤波进行边缘保持平滑后,手动对每个心脏序列中的一个相位进行分割。使用可变形配准将这些标签传播到所有其他心脏相位以进行分割。计算每个心脏腔室的体积,并用于推导心搏量、射血分数、心输出量和心指数。使用 Dice 系数和体积准确性来比较另外两个相位的手动分割与其相应的传播标签。对于左心室和心肌、右心室和右心房,这两个度量的平均值均>0.90,>0.80,这与节段内和节段间变异性的趋势一致。左心房的分割不太可靠。由于房室瓣周围存在系统的标签传播错误,平均而言,感兴趣的功能指标被低估了 6.76%或更多;但是,执行该流水线的速度比每个相位执行类似的手动分割快 80%。

相似文献

3
4

引用本文的文献

7
Registration of challenging pre-clinical brain images.挑战性临床前脑图像的注册。
J Neurosci Methods. 2013 May 30;216(1):62-77. doi: 10.1016/j.jneumeth.2013.03.015. Epub 2013 Apr 1.

本文引用的文献

3
Morphological studies of the murine heart based on probabilistic and statistical atlases.基于概率和统计图谱的小鼠心脏形态学研究。
Comput Med Imaging Graph. 2012 Mar;36(2):119-29. doi: 10.1016/j.compmedimag.2011.07.001. Epub 2011 Aug 5.
4
Evaluation of registration methods on thoracic CT: the EMPIRE10 challenge.胸部 CT 配准方法评估:EMPIRE10 挑战赛。
IEEE Trans Med Imaging. 2011 Nov;30(11):1901-20. doi: 10.1109/TMI.2011.2158349. Epub 2011 May 31.
5

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验