Suppr超能文献

玉米源叶对氮缺乏的适应不仅影响氮和碳代谢,还影响磷酸盐稳态的控制。

Maize source leaf adaptation to nitrogen deficiency affects not only nitrogen and carbon metabolism but also control of phosphate homeostasis.

机构信息

Department of Biology, Division of Biochemistry, Friedrich-Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany.

出版信息

Plant Physiol. 2012 Nov;160(3):1384-406. doi: 10.1104/pp.112.204420. Epub 2012 Sep 12.

Abstract

Crop plant development is strongly dependent on the availability of nitrogen (N) in the soil and the efficiency of N utilization for biomass production and yield. However, knowledge about molecular responses to N deprivation derives mainly from the study of model species. In this article, the metabolic adaptation of source leaves to low N was analyzed in maize (Zea mays) seedlings by parallel measurements of transcriptome and metabolome profiling. Inbred lines A188 and B73 were cultivated under sufficient (15 mM) or limiting (0.15 mM) nitrate supply for up to 30 d. Limited availability of N caused strong shifts in the metabolite profile of leaves. The transcriptome was less affected by the N stress but showed strong genotype- and age-dependent patterns. N starvation initiated the selective down-regulation of processes involved in nitrate reduction and amino acid assimilation; ammonium assimilation-related transcripts, on the other hand, were not influenced. Carbon assimilation-related transcripts were characterized by high transcriptional coordination and general down-regulation under low-N conditions. N deprivation caused a slight accumulation of starch but also directed increased amounts of carbohydrates into the cell wall and secondary metabolites. The decrease in N availability also resulted in accumulation of phosphate and strong down-regulation of genes usually involved in phosphate starvation response, underlining the great importance of phosphate homeostasis control under stress conditions.

摘要

作物的生长发育强烈依赖于土壤中氮素的供应和其用于生物量生产和产量形成的利用效率。然而,人们对于氮饥饿响应的分子机制的认识主要来源于模式物种的研究。在这篇文章中,我们通过对转录组和代谢组进行平行分析,研究了玉米幼苗源叶对低氮条件的代谢适应。实验中将 A188 和 B73 自交系在含有 15 mM 和 0.15 mM 硝酸盐的培养液中培养 30 天。氮素的有限供应导致叶片代谢组发生显著变化。而转录组受氮胁迫的影响较小,但表现出很强的基因型和年龄依赖性。氮饥饿启动了硝酸盐还原和氨基酸同化相关过程的选择性下调;而与铵同化相关的转录本不受影响。与碳同化相关的转录本表现出较高的转录协调和普遍下调,在低氮条件下更是如此。氮素供应的减少还导致淀粉略有积累,同时将更多的碳水化合物导向细胞壁和次生代谢物。此外,氮素可用性的降低还导致磷酸盐的积累和通常参与磷酸盐饥饿响应的基因的强烈下调,这突显了在胁迫条件下控制磷酸盐稳态的重要性。

相似文献

3
An integrated functional approach to dissect systemic responses in maize to arbuscular mycorrhizal symbiosis.
Plant Cell Environ. 2015 Aug;38(8):1591-612. doi: 10.1111/pce.12508. Epub 2015 Apr 9.
4
Low nitrogen availability inhibits the phosphorus starvation response in maize (Zea mays ssp. mays L.).
BMC Plant Biol. 2021 Jun 5;21(1):259. doi: 10.1186/s12870-021-02997-5.
8
Transcriptomic analysis highlights reciprocal interactions of urea and nitrate for nitrogen acquisition by maize roots.
Plant Cell Physiol. 2015 Mar;56(3):532-48. doi: 10.1093/pcp/pcu202. Epub 2014 Dec 17.

引用本文的文献

1
Primary Metabolic Variations in Maize Plants Affected by Different Levels of Nitrogen Supply.
Metabolites. 2025 Aug 1;15(8):519. doi: 10.3390/metabo15080519.
2
Quantitative Proteomic Analysis of Brassica Napus Reveals Intersections Between Nutrient Deficiency Responses.
Plant Cell Environ. 2025 Feb;48(2):1409-1428. doi: 10.1111/pce.15216. Epub 2024 Oct 24.
7
C4 Phosphoenolpyruvate Carboxylase: Evolution and transcriptional regulation.
Genet Mol Biol. 2024 Mar 22;46(3 Suppl 1):e20230190. doi: 10.1590/1678-4685-GMB-2023-0190. eCollection 2024.
8
Transcriptome Profiling Reveals the Gene Network Responding to Low Nitrogen Stress in Wheat.
Plants (Basel). 2024 Jan 26;13(3):371. doi: 10.3390/plants13030371.
9
1-nonene plays an important role in the response of maize-aphid-ladybird tritrophic interactions to nitrogen.
Front Plant Sci. 2024 Jan 8;14:1296915. doi: 10.3389/fpls.2023.1296915. eCollection 2023.
10
The nitrogen-dependent GABA pathway of tomato provides resistance to a globally invasive fruit fly.
Front Plant Sci. 2023 Dec 7;14:1252455. doi: 10.3389/fpls.2023.1252455. eCollection 2023.

本文引用的文献

1
The role of inorganic phosphate in the regulation of C4 photosynthesis.
Photosynth Res. 1993 Mar;35(3):205-11. doi: 10.1007/BF00016551.
2
Exploring the molecular and metabolic factors contributing to the adaptation of maize seedlings to nitrate limitation.
Front Plant Sci. 2011 Sep 13;2:49. doi: 10.3389/fpls.2011.00049. eCollection 2011.
3
The emerging importance of the SPX domain-containing proteins in phosphate homeostasis.
New Phytol. 2012 Mar;193(4):842-51. doi: 10.1111/j.1469-8137.2011.04002.x.
4
5
Auxin biosynthesis: a simple two-step pathway converts tryptophan to indole-3-acetic acid in plants.
Mol Plant. 2012 Mar;5(2):334-8. doi: 10.1093/mp/ssr104. Epub 2011 Dec 8.
7
Gene expression biomarkers provide sensitive indicators of in planta nitrogen status in maize.
Plant Physiol. 2011 Dec;157(4):1841-52. doi: 10.1104/pp.111.187898. Epub 2011 Oct 6.
8
Arabidopsis roots and shoots show distinct temporal adaptation patterns toward nitrogen starvation.
Plant Physiol. 2011 Nov;157(3):1255-82. doi: 10.1104/pp.111.179838. Epub 2011 Sep 7.
9
Phosphate deprivation in maize: genetics and genomics.
Plant Physiol. 2011 Jul;156(3):1067-77. doi: 10.1104/pp.111.174987. Epub 2011 May 26.
10
Gene coexpression network alignment and conservation of gene modules between two grass species: maize and rice.
Plant Physiol. 2011 Jul;156(3):1244-56. doi: 10.1104/pp.111.173047. Epub 2011 May 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验