Department of Plant Sciences, University of California Davis, CA, USA.
Front Plant Sci. 2012 Sep 10;3:213. doi: 10.3389/fpls.2012.00213. eCollection 2012.
Transcriptomics is a major platform to study organismal biology. The advent of new parallel sequencing technologies has opened up a new avenue of transcriptomics with ever deeper and deeper sequencing to identify and quantify each and every transcript in a sample. However, this may not be the best usage of the parallel sequencing technology for all transcriptomics experiments. I utilized the Shannon Entropy approach to estimate the information contained within a transcriptomics experiment and tested the ability of shallow RNAseq to capture the majority of this information. This analysis showed that it was possible to capture nearly all of the network or genomic information present in a variety of transcriptomics experiments using a subset of the most abundant 5000 transcripts or less within any given sample. Thus, it appears that it should be possible and affordable to conduct large scale factorial analysis with a high degree of replication using parallel sequencing technologies.
转录组学是研究生物机体的主要平台。新的平行测序技术的出现为转录组学开辟了一条新的途径,通过不断加深测序深度,可以识别和定量样本中的每一个转录本。然而,对于所有的转录组学实验来说,这种方法可能不是平行测序技术的最佳应用。我利用香农熵方法来估计转录组学实验中包含的信息,并测试了浅层 RNA-seq 技术捕获大部分信息的能力。这项分析表明,使用给定样本中最丰富的 5000 个转录本中的一小部分,几乎可以捕获各种转录组学实验中存在的大多数网络或基因组信息。因此,使用平行测序技术进行大规模的因子分析,并进行高度复制,似乎是可行且经济实惠的。