Suppr超能文献

一种用于分析转录反应的高通量RNA测序方法。

A high-throughput RNA-seq approach to profile transcriptional responses.

作者信息

Moyerbrailean G A, Davis G O, Harvey C T, Watza D, Wen X, Pique-Regi R, Luca F

机构信息

Wayne State University, Center for Molecular Medicine and Genetics, Detroit, 48201, USA.

University of Michigan, Department of Biostatistics, Ann Arbor, postcode, USA.

出版信息

Sci Rep. 2015 Oct 29;5:14976. doi: 10.1038/srep14976.

Abstract

In recent years RNA-seq protocols have been developed to investigate a variety of biological problems by measuring the abundance of different RNAs. Many study designs involve performing expensive preliminary studies to screen or optimize experimental conditions. Testing a large number of conditions in parallel may be more cost effective. For example, analyzing tissue/environment-specific gene expression generally implies screening a large number of cellular conditions and samples, without prior knowledge of which conditions are most informative (e.g., some cell types may not respond to certain treatments). To circumvent these challenges, we have established a new two-step high-throughput RNA-seq approach: the first step consists of gene expression screening of a large number of conditions, while the second step focuses on deep sequencing of the most relevant conditions (e.g., largest number of differentially expressed genes). This study design allows for a fast and economical screen in step one, with a more efficient allocation of resources for the deep sequencing of the most biologically relevant libraries in step two. We have applied this approach to study the response to 23 treatments in three lymphoblastoid cell lines demonstrating that it should also be useful for other high-throughput transcriptome profiling applications requiring iterative refinement or screening.

摘要

近年来,RNA测序方案已被开发出来,通过测量不同RNA的丰度来研究各种生物学问题。许多研究设计涉及进行昂贵的初步研究以筛选或优化实验条件。并行测试大量条件可能更具成本效益。例如,分析组织/环境特异性基因表达通常意味着筛选大量细胞条件和样本,而事先并不清楚哪些条件最具信息量(例如,某些细胞类型可能对某些处理无反应)。为了克服这些挑战,我们建立了一种新的两步高通量RNA测序方法:第一步包括对大量条件进行基因表达筛选,而第二步则专注于对最相关条件(例如,差异表达基因数量最多的条件)进行深度测序。这种研究设计在第一步中能够实现快速且经济的筛选,同时在第二步中更有效地分配资源用于对生物学相关性最高的文库进行深度测序。我们已将此方法应用于研究三种淋巴母细胞系对23种处理的反应,表明它对于其他需要迭代优化或筛选的高通量转录组分析应用也应是有用的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/695a/4625130/8df85f19b058/srep14976-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验