Suppr超能文献

高渗应激在炎症和疾病中的作用。

The role of hyperosmotic stress in inflammation and disease.

作者信息

Brocker Chad, Thompson David C, Vasiliou Vasilis

机构信息

Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.

出版信息

Biomol Concepts. 2012 Aug;3(4):345-364. doi: 10.1515/bmc-2012-0001.

Abstract

Hyperosmotic stress is an often overlooked process that potentially contributes to a number of human diseases. Whereas renal hyperosmolarity is a well-studied phenomenon, recent research provides evidence that many non-renal tissues routinely experience hyperosmotic stress that may contribute significantly to disease initiation and progression. Moreover, a growing body of evidence implicates hyperosmotic stress as a potent inflammatory stimulus by triggering proinflammatory cytokine release and inflammation. Under physiological conditions, the urine concentrating mechanism within the inner medullary region of the mammalian kidney exposes cells to high extracellular osmolarity. As such, renal cells have developed many adaptive strategies to compensate for increased osmolarity. Hyperosmotic stress is linked to many maladies, including acute and chronic, as well as local and systemic, inflammatory disorders. Hyperosmolarity triggers cell shrinkage, oxidative stress, protein carbonylation, mitochondrial depolarization, DNA damage, and cell cycle arrest, thus rendering cells susceptible to apoptosis. However, many adaptive mechanisms exist to counter the deleterious effects of hyperosmotic stress, including cytoskeletal rearrangement and up-regulation of antioxidant enzymes, transporters, and heat shock proteins. Osmolyte synthesis is also up-regulated and many of these compounds have been shown to reduce inflammation. The cytoprotective mechanisms and associated regulatory pathways that accompany the renal response to hyperosmolarity are found in many non-renal tissues, suggesting cells are commonly confronted with hyperosmotic conditions. Osmoadaptation allows cells to survive and function under potentially cytotoxic conditions. This review covers the pathological consequences of hyperosmotic stress in relation to disease and emphasizes the importance of considering hyperosmolarity in inflammation and disease progression.

摘要

高渗应激是一个常被忽视的过程,可能与多种人类疾病有关。虽然肾脏高渗是一个已得到充分研究的现象,但最近的研究表明,许多非肾组织经常经历高渗应激,这可能对疾病的发生和发展有重大影响。此外,越来越多的证据表明,高渗应激通过触发促炎细胞因子释放和炎症反应,是一种强大的炎症刺激因素。在生理条件下,哺乳动物肾脏髓质内区域的尿液浓缩机制使细胞暴露于高细胞外渗透压。因此,肾细胞已发展出许多适应性策略来补偿渗透压的增加。高渗应激与许多疾病有关,包括急性和慢性、局部和全身性炎症性疾病。高渗会引发细胞萎缩、氧化应激、蛋白质羰基化、线粒体去极化、DNA损伤和细胞周期停滞,从而使细胞易于凋亡。然而,可以利用许多适应性机制来对抗高渗应激的有害影响,包括细胞骨架重排以及抗氧化酶、转运蛋白和热休克蛋白的上调。渗透溶质的合成也会上调,并且许多这些化合物已被证明可以减轻炎症。肾脏对高渗反应的细胞保护机制和相关调节途径在许多非肾组织中也存在,这表明细胞通常会面临高渗环境。渗透适应使细胞能够在潜在的细胞毒性条件下存活并发挥功能。本综述涵盖了高渗应激与疾病相关的病理后果,并强调了在炎症和疾病进展中考虑高渗的重要性。

相似文献

1
The role of hyperosmotic stress in inflammation and disease.
Biomol Concepts. 2012 Aug;3(4):345-364. doi: 10.1515/bmc-2012-0001.
2
Hyperosmotic stress response regulates interstitial homeostasis and pathogenic inflammation.
J Biochem. 2023 Mar 7;173(3):159-166. doi: 10.1093/jb/mvad009.
3
Osmolytes resist against harsh osmolarity: Something old something new.
Biochimie. 2019 Mar;158:156-164. doi: 10.1016/j.biochi.2019.01.002. Epub 2019 Jan 7.
5
Chronic hyperosmolarity mediates constitutive expression of molecular chaperones and resistance to injury.
Am J Physiol Renal Physiol. 2003 Mar;284(3):F564-74. doi: 10.1152/ajprenal.00058.2002. Epub 2002 Oct 29.
6
Gadd45 proteins induce G2/M arrest and modulate apoptosis in kidney cells exposed to hyperosmotic stress.
J Biol Chem. 2004 Sep 10;279(37):39075-84. doi: 10.1074/jbc.M406643200. Epub 2004 Jul 15.
8
Induction of molecular chaperones by hyperosmotic stress in mouse inner medullary collecting duct cells.
Am J Physiol. 1997 Jul;273(1 Pt 2):F9-17. doi: 10.1152/ajprenal.1997.273.1.F9.
9
Osmotic expression of aldose reductase in retinal pigment epithelial cells: involvement of NFAT5.
Graefes Arch Clin Exp Ophthalmol. 2016 Dec;254(12):2387-2400. doi: 10.1007/s00417-016-3492-x. Epub 2016 Sep 14.
10
Effects of hyperosmotic NaCl and glycerol stress on stress response of human HeLa cells.
Biol Pharm Bull. 1997 Jun;20(6):605-12. doi: 10.1248/bpb.20.605.

引用本文的文献

3
Non-uniform impact of extracellular osmotic variations at subcellular level.
Cell Death Discov. 2025 Aug 27;11(1):410. doi: 10.1038/s41420-025-02703-6.
4
Early responses to hyperosmotic stress at the yeast vacuole.
bioRxiv. 2025 Aug 13:2025.08.11.669746. doi: 10.1101/2025.08.11.669746.
9
Role of hyaluronate containing artificial tears in mitigating markers of dry eye disease using in vitro models.
Indian J Ophthalmol. 2025 Jun 1;73(Suppl 3):S435-S443. doi: 10.4103/IJO.IJO_2151_24. Epub 2025 May 6.

本文引用的文献

1
Cell volume regulation in chondrocytes.
Cell Physiol Biochem. 2011;28(6):1111-22. doi: 10.1159/000335847. Epub 2011 Dec 16.
2
Tonicity-independent regulation of the osmosensitive transcription factor TonEBP (NFAT5).
Am J Physiol Cell Physiol. 2012 Jan 1;302(1):C1-8. doi: 10.1152/ajpcell.00327.2011. Epub 2011 Oct 12.
4
The multifaceted role of the inflammasome in inflammatory bowel diseases.
ScientificWorldJournal. 2011 Jul 28;11:1536-47. doi: 10.1100/tsw.2011.139.
5
Nuclear factor of activated T cells 5 regulates vascular smooth muscle cell phenotypic modulation.
Arterioscler Thromb Vasc Biol. 2011 Oct;31(10):2287-96. doi: 10.1161/ATVBAHA.111.232165. Epub 2011 Jul 14.
6
NF-AT5 is a critical regulator of inflammatory arthritis.
Arthritis Rheum. 2011 Jul;63(7):1843-52. doi: 10.1002/art.30229.
10
Role of NFAT5 in inflammatory disorders associated with osmotic stress.
Curr Genomics. 2010 Dec;11(8):584-90. doi: 10.2174/138920210793360961.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验