Suppr超能文献

利用物种分布模型预测生物多样性的命运:提高模型可比性和可重复性。

Predicting the fate of biodiversity using species' distribution models: enhancing model comparability and repeatability.

机构信息

Ecology and Evolution, Stony Brook University, Stony Brook, New York, United States of America.

出版信息

PLoS One. 2012;7(9):e44402. doi: 10.1371/journal.pone.0044402. Epub 2012 Sep 11.

Abstract

Species distribution modeling (SDM) is an increasingly important tool to predict the geographic distribution of species. Even though many problems associated with this method have been highlighted and solutions have been proposed, little has been done to increase comparability among studies. We reviewed recent publications applying SDMs and found that seventy nine percent failed to report methods that ensure comparability among studies, such as disclosing the maximum probability range produced by the models and reporting on the number of species occurrences used. We modeled six species of Falco from northern Europe and demonstrate that model results are altered by (1) spatial bias in species' occurrence data, (2) differences in the geographic extent of the environmental data, and (3) the effects of transformation of model output to presence/absence data when applying thresholds. Depending on the modeling decisions, forecasts of the future geographic distribution of Falco ranged from range contraction in 80% of the species to no net loss in any species, with the best model predicting no net loss of habitat in Northern Europe. The fact that predictions of range changes in response to climate change in published studies may be influenced by decisions in the modeling process seriously hampers the possibility of making sound management recommendations. Thus, each of the decisions made in generating SDMs should be reported and evaluated to ensure conclusions and policies are based on the biology and ecology of the species being modeled.

摘要

物种分布模型(SDM)是预测物种地理分布的重要工具。尽管已经提出了许多与该方法相关的问题和解决方案,但在提高研究间的可比性方面所做的工作很少。我们回顾了最近应用 SDM 的出版物,发现 79%的研究未能报告确保研究间可比性的方法,例如披露模型产生的最大概率范围并报告所使用的物种出现数量。我们对来自北欧的 6 种 Falco 进行了建模,并证明模型结果受到以下因素的影响:(1)物种出现数据的空间偏差,(2)环境数据的地理范围差异,以及(3)在应用阈值时将模型输出转换为存在/缺失数据时的影响。根据建模决策,Falco 未来地理分布的预测范围从 80%的物种范围收缩到任何物种都没有净损失,最佳模型预测北欧没有栖息地净损失。发表的研究中气候变化响应的范围变化预测可能受到建模过程中决策的影响,这严重阻碍了制定合理管理建议的可能性。因此,应该报告和评估生成 SDM 过程中的每个决策,以确保结论和政策基于所建模物种的生物学和生态学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/608e/3439421/8a8db378c2e9/pone.0044402.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验