Suppr超能文献

SVMTriP:一种使用支持向量机整合三肽相似性和倾向度来预测抗原表位的方法。

SVMTriP: a method to predict antigenic epitopes using support vector machine to integrate tri-peptide similarity and propensity.

机构信息

School of Biological Sciences, Center for Plant Science and Innovation, University of Nebraska, Lincoln, Nebraska, United States of America.

出版信息

PLoS One. 2012;7(9):e45152. doi: 10.1371/journal.pone.0045152. Epub 2012 Sep 12.

Abstract

Identifying protein surface regions preferentially recognizable by antibodies (antigenic epitopes) is at the heart of new immuno-diagnostic reagent discovery and vaccine design, and computational methods for antigenic epitope prediction provide crucial means to serve this purpose. Many linear B-cell epitope prediction methods were developed, such as BepiPred, ABCPred, AAP, BCPred, BayesB, BEOracle/BROracle, and BEST, towards this goal. However, effective immunological research demands more robust performance of the prediction method than what the current algorithms could provide. In this work, a new method to predict linear antigenic epitopes is developed; Support Vector Machine has been utilized by combining the Tri-peptide similarity and Propensity scores (SVMTriP). Applied to non-redundant B-cell linear epitopes extracted from IEDB, SVMTriP achieves a sensitivity of 80.1% and a precision of 55.2% with a five-fold cross-validation. The AUC value is 0.702. The combination of similarity and propensity of tri-peptide subsequences can improve the prediction performance for linear B-cell epitopes. Moreover, SVMTriP is capable of recognizing viral peptides from a human protein sequence background. A web server based on our method is constructed for public use. The server and all datasets used in the current study are available at http://sysbio.unl.edu/SVMTriP.

摘要

识别抗体(抗原表位)优先识别的蛋白质表面区域是新免疫诊断试剂发现和疫苗设计的核心,而抗原表位预测的计算方法提供了实现这一目标的重要手段。为此,已经开发了许多线性 B 细胞表位预测方法,如 BepiPred、ABCPred、AAP、BCPred、BayesB、BEOracle/BROracle 和 BEST。然而,有效的免疫研究需要预测方法比当前算法提供的更强大的性能。在这项工作中,开发了一种新的预测线性抗原表位的方法;通过结合三肽相似性和倾向分数(SVMTriP),利用支持向量机来实现。应用于从 IEDB 提取的非冗余 B 细胞线性表位,SVMTriP 在五重交叉验证中实现了 80.1%的敏感性和 55.2%的精度。AUC 值为 0.702。三肽序列相似性和倾向的组合可以提高线性 B 细胞表位的预测性能。此外,SVMTriP 能够从人类蛋白质序列背景中识别病毒肽。基于我们的方法构建了一个公共使用的网络服务器。当前研究中使用的服务器和所有数据集均可在 http://sysbio.unl.edu/SVMTriP 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd8a/3440317/1debdd6ec181/pone.0045152.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验