Suppr超能文献

BEST:从抗原序列中改进 B 细胞表位的预测。

BEST: improved prediction of B-cell epitopes from antigen sequences.

机构信息

School of Mathematical Sciences and LPMC, Nankai University, Tianjin, People's Republic of China.

出版信息

PLoS One. 2012;7(6):e40104. doi: 10.1371/journal.pone.0040104. Epub 2012 Jun 27.

Abstract

Accurate identification of immunogenic regions in a given antigen chain is a difficult and actively pursued problem. Although accurate predictors for T-cell epitopes are already in place, the prediction of the B-cell epitopes requires further research. We overview the available approaches for the prediction of B-cell epitopes and propose a novel and accurate sequence-based solution. Our BEST (B-cell Epitope prediction using Support vector machine Tool) method predicts epitopes from antigen sequences, in contrast to some method that predict only from short sequence fragments, using a new architecture based on averaging selected scores generated from sliding 20-mers by a Support Vector Machine (SVM). The SVM predictor utilizes a comprehensive and custom designed set of inputs generated by combining information derived from the chain, sequence conservation, similarity to known (training) epitopes, and predicted secondary structure and relative solvent accessibility. Empirical evaluation on benchmark datasets demonstrates that BEST outperforms several modern sequence-based B-cell epitope predictors including ABCPred, method by Chen et al. (2007), BCPred, COBEpro, BayesB, and CBTOPE, when considering the predictions from antigen chains and from the chain fragments. Our method obtains a cross-validated area under the receiver operating characteristic curve (AUC) for the fragment-based prediction at 0.81 and 0.85, depending on the dataset. The AUCs of BEST on the benchmark sets of full antigen chains equal 0.57 and 0.6, which is significantly and slightly better than the next best method we tested. We also present case studies to contrast the propensity profiles generated by BEST and several other methods.

摘要

准确识别给定抗原链中的免疫原性区域是一个困难且备受关注的问题。尽管已经有了准确的 T 细胞表位预测器,但 B 细胞表位的预测仍需要进一步研究。我们综述了现有的 B 细胞表位预测方法,并提出了一种新颖而准确的基于序列的解决方案。我们的 BEST(使用支持向量机工具的 B 细胞表位预测)方法从抗原序列预测表位,与仅从短序列片段预测的某些方法不同,它使用基于支持向量机(SVM)的滑动 20 -mer 生成的选定分数的平均值的新架构。SVM 预测器利用了一组全面且定制的输入,这些输入是通过结合从链中得出的信息、序列保守性、与已知(训练)表位的相似性以及预测的二级结构和相对溶剂可及性生成的。在基准数据集上的实证评估表明,BEST 在考虑来自抗原链和链片段的预测时,优于包括 ABCPred、Chen 等人的方法(2007 年)、BCPred、COBEpro、BayesB 和 CBTOPE 在内的几种现代基于序列的 B 细胞表位预测器。当考虑基于片段的预测时,我们的方法在交叉验证时获得的接收器操作特征曲线(AUC)为 0.81 和 0.85,具体取决于数据集。BEST 在基准抗原链集合上的 AUC 分别为 0.57 和 0.6,这明显优于我们测试的下一个最佳方法。我们还展示了案例研究,以对比 BEST 和其他几种方法生成的倾向分布。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fc6/3384636/ca3c4b1ccdbe/pone.0040104.g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验