Suppr超能文献

使用多尺度谱特征进行全球网络对齐。

Global network alignment using multiscale spectral signatures.

机构信息

Center for Bioinformatics and Computational Biology, Institute for Advanced Computer Studies and Department of Computer Science, University of Maryland, College Park, MD 20742, USA.

出版信息

Bioinformatics. 2012 Dec 1;28(23):3105-14. doi: 10.1093/bioinformatics/bts592. Epub 2012 Oct 9.

Abstract

MOTIVATION

Protein interaction networks provide an important system-level view of biological processes. One of the fundamental problems in biological network analysis is the global alignment of a pair of networks, which puts the proteins of one network into correspondence with the proteins of another network in a manner that conserves their interactions while respecting other evidence of their homology. By providing a mapping between the networks of different species, alignments can be used to inform hypotheses about the functions of unannotated proteins, the existence of unobserved interactions, the evolutionary divergence between the two species and the evolution of complexes and pathways.

RESULTS

We introduce GHOST, a global pairwise network aligner that uses a novel spectral signature to measure topological similarity between subnetworks. It combines a seed-and-extend global alignment phase with a local search procedure and exceeds state-of-the-art performance on several network alignment tasks. We show that the spectral signature used by GHOST is highly discriminative, whereas the alignments it produces are also robust to experimental noise. When compared with other recent approaches, we find that GHOST is able to recover larger and more biologically significant, shared subnetworks between species.

AVAILABILITY

An efficient and parallelized implementation of GHOST, released under the Apache 2.0 license, is available at http://cbcb.umd.edu/kingsford_group/ghost

CONTACT

rob@cs.umd.edu.

摘要

动机

蛋白质相互作用网络为生物过程提供了重要的系统级视图。生物网络分析中的一个基本问题是一对网络的全局对齐,即将一个网络的蛋白质与另一个网络的蛋白质以一种在保留它们的相互作用的同时尊重它们同源性的其他证据的方式进行对应。通过为不同物种的网络提供映射,可以将对齐用于推断未注释蛋白质的功能、未观察到的相互作用的存在、两个物种之间的进化分歧以及复合物和途径的进化。

结果

我们引入了 GHOST,一种全局成对网络对齐器,它使用新的谱特征来测量子网之间的拓扑相似性。它结合了种子和扩展的全局对齐阶段和局部搜索过程,并在几个网络对齐任务上超过了最新技术水平。我们表明,GHOST 使用的谱特征具有高度的辨别力,而它生成的对齐也对实验噪声具有鲁棒性。与其他最近的方法相比,我们发现 GHOST 能够在物种之间恢复更大和更具生物学意义的共享子网。

可用性

GHOST 的高效和并行实现,根据 Apache 2.0 许可证发布,可在 http://cbcb.umd.edu/kingsford_group/ghost 获得。

联系

rob@cs.umd.edu

相似文献

1
Global network alignment using multiscale spectral signatures.使用多尺度谱特征进行全球网络对齐。
Bioinformatics. 2012 Dec 1;28(23):3105-14. doi: 10.1093/bioinformatics/bts592. Epub 2012 Oct 9.
2
Fuse: multiple network alignment via data fusion.Fuse:通过数据融合进行多重网络比对。
Bioinformatics. 2016 Apr 15;32(8):1195-203. doi: 10.1093/bioinformatics/btv731. Epub 2015 Dec 14.
6
L-GRAAL: Lagrangian graphlet-based network aligner.L-GRAAL:基于拉格朗日图元的网络对齐工具。
Bioinformatics. 2015 Jul 1;31(13):2182-9. doi: 10.1093/bioinformatics/btv130. Epub 2015 Feb 28.
7
AligNet: alignment of protein-protein interaction networks.AligNet:蛋白质-蛋白质相互作用网络的对齐。
BMC Bioinformatics. 2020 Nov 18;21(Suppl 6):265. doi: 10.1186/s12859-020-3502-1.
10
Optimizing a global alignment of protein interaction networks.优化蛋白质相互作用网络的全局比对。
Bioinformatics. 2013 Nov 1;29(21):2765-73. doi: 10.1093/bioinformatics/btt486. Epub 2013 Sep 17.

引用本文的文献

4
Supervised biological network alignment with graph neural networks.基于图神经网络的监督生物网络比对。
Bioinformatics. 2023 Jun 30;39(39 Suppl 1):i465-i474. doi: 10.1093/bioinformatics/btad241.
6
MUNDO: protein function prediction embedded in a multispecies world.MUNDO:嵌入多物种世界的蛋白质功能预测
Bioinform Adv. 2021 Sep 29;2(1):vbab025. doi: 10.1093/bioadv/vbab025. eCollection 2022.
7
Challenges and Limitations of Biological Network Analysis.生物网络分析的挑战与局限
BioTech (Basel). 2022 Jul 7;11(3):24. doi: 10.3390/biotech11030024.
10
Pairwise Biological Network Alignment Based on Discrete Bat Algorithm.基于离散蝙蝠算法的成对生物网络比对。
Comput Math Methods Med. 2021 Nov 3;2021:5548993. doi: 10.1155/2021/5548993. eCollection 2021.

本文引用的文献

1
Structural distance and evolutionary relationship of networks.网络的结构距离与进化关系。
Biosystems. 2012 Mar;107(3):186-96. doi: 10.1016/j.biosystems.2011.11.004. Epub 2011 Nov 23.
2
A Tensor-Based Algorithm for High-Order Graph Matching.基于张量的高阶图匹配算法。
IEEE Trans Pattern Anal Mach Intell. 2011 Dec;33(12):2383-95. doi: 10.1109/TPAMI.2011.110. Epub 2011 Jun 9.
8
Topological network alignment uncovers biological function and phylogeny.拓扑网络比对揭示了生物学功能和系统发育。
J R Soc Interface. 2010 Sep 6;7(50):1341-54. doi: 10.1098/rsif.2010.0063. Epub 2010 Mar 17.
10
The Modular Organization of Protein Interactions in Escherichia coli.大肠杆菌中蛋白质相互作用的模块化组织
PLoS Comput Biol. 2009 Oct;5(10):e1000523. doi: 10.1371/journal.pcbi.1000523. Epub 2009 Oct 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验