Suppr超能文献

用于可逆多室模型中动力学参数估计的频域闭式公式。

Fourier domain closed-form formulas for estimation of kinetic parameters in reversible multi-compartment models.

机构信息

Utah Center for Advanced Imaging Research, Department of Radiology, University of Utah, 729 Arapeen Drive, Salt Lake City, Utah 84108, USA.

出版信息

Biomed Eng Online. 2012 Sep 20;11:70. doi: 10.1186/1475-925X-11-70.

Abstract

BACKGROUND

Compared with static imaging, dynamic emission computed tomographic imaging with compartment modeling can quantify in vivo physiologic processes, providing useful information about molecular disease processes. Dynamic imaging involves estimation of kinetic rate parameters. For multi-compartment models, kinetic parameter estimation can be computationally demanding and problematic with local minima.

METHODS

This paper offers a new perspective to the compartment model fitting problem where Fourier linear system theory is applied to derive closed-form formulas for estimating kinetic parameters for the two-compartment model. The proposed Fourier domain estimation method provides a unique solution, and offers very different noise response as compared to traditional non-linear chi-squared minimization techniques.

RESULTS

The unique feature of the proposed Fourier domain method is that only low frequency components are used for kinetic parameter estimation, where the DC (i.e., the zero frequency) component in the data is treated as the most important information, and high frequency components that tend to be corrupted by statistical noise are discarded. Computer simulations show that the proposed method is robust without having to specify the initial condition. The resultant solution can be fine tuned using the traditional iterative method.

CONCLUSIONS

The proposed Fourier-domain estimation method has closed-form formulas. The proposed Fourier-domain curve-fitting method does not require an initial condition, it minimizes a quadratic objective function and a closed-form solution can be obtained. The noise is easier to control, simply by discarding the high frequency components, and emphasizing the DC component.

摘要

背景

与静态成像相比,具有室模型的动态发射计算机断层成像可以定量测量体内生理过程,提供有关分子疾病过程的有用信息。动态成像涉及估计动力学速率参数。对于多室模型,动力学参数估计可能具有计算挑战性并且存在局部最小值问题。

方法

本文提供了一种新的观点,即将傅里叶线性系统理论应用于双室模型的动力学参数估计,以推导出用于估计动力学参数的封闭形式公式。提出的傅里叶域估计方法提供了唯一的解决方案,与传统的非线性 χ 平方最小化技术相比,提供了非常不同的噪声响应。

结果

所提出的傅里叶域方法的独特特征在于仅使用低频分量进行动力学参数估计,其中数据中的直流(即零频率)分量被视为最重要的信息,并且容易受到统计噪声污染的高频分量被丢弃。计算机模拟表明,该方法具有鲁棒性,无需指定初始条件。可以使用传统的迭代方法对所得解决方案进行微调。

结论

所提出的傅里叶域估计方法具有封闭形式的公式。所提出的傅里叶域曲线拟合方法不需要初始条件,它最小化二次目标函数,可以得到封闭形式的解。通过丢弃高频分量并强调直流分量,噪声更容易控制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7198/3538570/e680ca68f397/1475-925X-11-70-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验