Suppr超能文献

医学成像中房室动力学模型的贝叶斯分析验证

Validation of Bayesian analysis of compartmental kinetic models in medical imaging.

作者信息

Sitek Arkadiusz, Li Quanzheng, El Fakhri Georges, Alpert Nathaniel M

机构信息

Massachusetts General Hospital and Harvard Medical School, Radiology Department, 55 Fruit Street, Boston, MA 02114, USA.

Massachusetts General Hospital and Harvard Medical School, Radiology Department, 55 Fruit Street, Boston, MA 02114, USA.

出版信息

Phys Med. 2016 Oct;32(10):1252-1258. doi: 10.1016/j.ejmp.2016.09.010. Epub 2016 Sep 28.

Abstract

INTRODUCTION

Kinetic compartmental analysis is frequently used to compute physiologically relevant quantitative values from time series of images. In this paper, a new approach based on Bayesian analysis to obtain information about these parameters is presented and validated.

MATERIALS AND METHODS

The closed-form of the posterior distribution of kinetic parameters is derived with a hierarchical prior to model the standard deviation of normally distributed noise. Markov chain Monte Carlo methods are used for numerical estimation of the posterior distribution. Computer simulations of the kinetics of F18-fluorodeoxyglucose (FDG) are used to demonstrate drawing statistical inferences about kinetic parameters and to validate the theory and implementation. Additionally, point estimates of kinetic parameters and covariance of those estimates are determined using the classical non-linear least squares approach.

RESULTS AND DISCUSSION

Posteriors obtained using methods proposed in this work are accurate as no significant deviation from the expected shape of the posterior was found (one-sided P>0.08). It is demonstrated that the results obtained by the standard non-linear least-square methods fail to provide accurate estimation of uncertainty for the same data set (P<0.0001).

CONCLUSIONS

The results of this work validate new methods for a computer simulations of FDG kinetics. Results show that in situations where the classical approach fails in accurate estimation of uncertainty, Bayesian estimation provides an accurate information about the uncertainties in the parameters. Although a particular example of FDG kinetics was used in the paper, the methods can be extended for different pharmaceuticals and imaging modalities.

摘要

引言

动力学房室分析经常用于从图像时间序列中计算生理相关的定量值。本文提出并验证了一种基于贝叶斯分析来获取这些参数信息的新方法。

材料与方法

通过分层先验推导动力学参数后验分布的闭式,以对正态分布噪声的标准差进行建模。马尔可夫链蒙特卡罗方法用于后验分布的数值估计。利用F18-氟脱氧葡萄糖(FDG)动力学的计算机模拟来证明对动力学参数进行统计推断并验证该理论及实现方法。此外,使用经典非线性最小二乘法确定动力学参数的点估计及其估计值的协方差。

结果与讨论

使用本文提出的方法获得的后验分布是准确的,因为未发现与预期后验形状有显著偏差(单侧P>0.08)。结果表明,对于同一数据集,标准非线性最小二乘法得到的结果无法准确估计不确定性(P<0.0001)。

结论

本文工作的结果验证了FDG动力学计算机模拟的新方法。结果表明,在经典方法无法准确估计不确定性的情况下,贝叶斯估计能提供有关参数不确定性的准确信息。尽管本文使用了FDG动力学的一个特定示例,但这些方法可扩展到不同的药物和成像模式。

相似文献

1
Validation of Bayesian analysis of compartmental kinetic models in medical imaging.
Phys Med. 2016 Oct;32(10):1252-1258. doi: 10.1016/j.ejmp.2016.09.010. Epub 2016 Sep 28.
3
Bayesian inference for stochastic kinetic models using a diffusion approximation.
Biometrics. 2005 Sep;61(3):781-8. doi: 10.1111/j.1541-0420.2005.00345.x.
4
Kinetic quantitation of cerebral PET-FDG studies without concurrent blood sampling: statistical recovery of the arterial input function.
IEEE Trans Med Imaging. 2010 Mar;29(3):610-24. doi: 10.1109/TMI.2009.2029096. Epub 2009 Aug 25.
6
Direct reconstruction of kinetic parameter images from dynamic PET data.
IEEE Trans Med Imaging. 2005 May;24(5):636-50. doi: 10.1109/TMI.2005.845317.
7
Spatiotemporal Bayesian inference dipole analysis for MEG neuroimaging data.
Neuroimage. 2005 Oct 15;28(1):84-98. doi: 10.1016/j.neuroimage.2005.06.003. Epub 2005 Jul 15.
8
"Population" approach improves parameter estimation of kinetic models from dynamic PET data.
IEEE Trans Med Imaging. 2004 Mar;23(3):297-306. doi: 10.1109/TMI.2004.824243.
9
Robust estimation of kinetic parameters in dynamic PET imaging.
Med Image Comput Comput Assist Interv. 2011;14(Pt 1):492-9. doi: 10.1007/978-3-642-23623-5_62.
10
Bayesian analysis of ROC curves using Markov-chain Monte Carlo methods.
Med Decis Making. 1996 Oct-Dec;16(4):404-11. doi: 10.1177/0272989X9601600411.

引用本文的文献

1
Efficient DCE-MRI Parameter and Uncertainty Estimation Using a Neural Network.
IEEE Trans Med Imaging. 2020 May;39(5):1712-1723. doi: 10.1109/TMI.2019.2953901. Epub 2019 Nov 26.

本文引用的文献

1
Limitations of Poisson statistics in describing radioactive decay.
Phys Med. 2015 Dec;31(8):1105-1107. doi: 10.1016/j.ejmp.2015.08.015. Epub 2015 Oct 23.
2
Bayesian Analysis of a One Compartment Kinetic Model Used in Medical Imaging.
J Appl Stat. 2015;42(1):98-113. doi: 10.1080/02664763.2014.934666.
4
Analysis of nonlinear regression models: a cautionary note.
Dose Response. 2006 May 1;3(3):342-52. doi: 10.2203/dose-response.003.03.005.
5
The Monte Carlo method.
J Am Stat Assoc. 1949 Sep;44(247):335-41. doi: 10.1080/01621459.1949.10483310.
6
Positron emission tomography compartmental models: a basis pursuit strategy for kinetic modeling.
J Cereb Blood Flow Metab. 2002 Dec;22(12):1425-39. doi: 10.1097/01.wcb.0000045042.03034.42.
8
Noninvasive determination of local cerebral metabolic rate of glucose in man.
Am J Physiol. 1980 Jan;238(1):E69-82. doi: 10.1152/ajpendo.1980.238.1.E69.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验