Sitek Arkadiusz, Li Quanzheng, El Fakhri Georges, Alpert Nathaniel M
Massachusetts General Hospital and Harvard Medical School, Radiology Department, 55 Fruit Street, Boston, MA 02114, USA.
Massachusetts General Hospital and Harvard Medical School, Radiology Department, 55 Fruit Street, Boston, MA 02114, USA.
Phys Med. 2016 Oct;32(10):1252-1258. doi: 10.1016/j.ejmp.2016.09.010. Epub 2016 Sep 28.
Kinetic compartmental analysis is frequently used to compute physiologically relevant quantitative values from time series of images. In this paper, a new approach based on Bayesian analysis to obtain information about these parameters is presented and validated.
The closed-form of the posterior distribution of kinetic parameters is derived with a hierarchical prior to model the standard deviation of normally distributed noise. Markov chain Monte Carlo methods are used for numerical estimation of the posterior distribution. Computer simulations of the kinetics of F18-fluorodeoxyglucose (FDG) are used to demonstrate drawing statistical inferences about kinetic parameters and to validate the theory and implementation. Additionally, point estimates of kinetic parameters and covariance of those estimates are determined using the classical non-linear least squares approach.
Posteriors obtained using methods proposed in this work are accurate as no significant deviation from the expected shape of the posterior was found (one-sided P>0.08). It is demonstrated that the results obtained by the standard non-linear least-square methods fail to provide accurate estimation of uncertainty for the same data set (P<0.0001).
The results of this work validate new methods for a computer simulations of FDG kinetics. Results show that in situations where the classical approach fails in accurate estimation of uncertainty, Bayesian estimation provides an accurate information about the uncertainties in the parameters. Although a particular example of FDG kinetics was used in the paper, the methods can be extended for different pharmaceuticals and imaging modalities.
动力学房室分析经常用于从图像时间序列中计算生理相关的定量值。本文提出并验证了一种基于贝叶斯分析来获取这些参数信息的新方法。
通过分层先验推导动力学参数后验分布的闭式,以对正态分布噪声的标准差进行建模。马尔可夫链蒙特卡罗方法用于后验分布的数值估计。利用F18-氟脱氧葡萄糖(FDG)动力学的计算机模拟来证明对动力学参数进行统计推断并验证该理论及实现方法。此外,使用经典非线性最小二乘法确定动力学参数的点估计及其估计值的协方差。
使用本文提出的方法获得的后验分布是准确的,因为未发现与预期后验形状有显著偏差(单侧P>0.08)。结果表明,对于同一数据集,标准非线性最小二乘法得到的结果无法准确估计不确定性(P<0.0001)。
本文工作的结果验证了FDG动力学计算机模拟的新方法。结果表明,在经典方法无法准确估计不确定性的情况下,贝叶斯估计能提供有关参数不确定性的准确信息。尽管本文使用了FDG动力学的一个特定示例,但这些方法可扩展到不同的药物和成像模式。