Suppr超能文献

层次网络、幂律和神经元洪流。

Hierarchical networks, power laws, and neuronal avalanches.

机构信息

Department of Computer Science, International Computer Science Institute, University of California Berkeley, California 94704, USA.

出版信息

Chaos. 2013 Mar;23(1):013135. doi: 10.1063/1.4793782.

Abstract

We show that in networks with a hierarchical architecture, critical dynamical behaviors can emerge even when the underlying dynamical processes are not critical. This finding provides explicit insight into current studies of the brain's neuronal network showing power-law avalanches in neural recordings, and provides a theoretical justification of recent numerical findings. Our analysis shows how the hierarchical organization of a network can itself lead to power-law distributions of avalanche sizes and durations, scaling laws between anomalous exponents, and universal functions-even in the absence of self-organized criticality or critical points. This hierarchy-induced phenomenon is independent of, though can potentially operate in conjunction with, standard dynamical mechanisms for generating power laws.

摘要

我们表明,在具有层次结构的网络中,即使基础动力学过程不是临界的,也可能出现关键的动力学行为。这一发现为当前研究大脑神经元网络提供了明确的见解,这些研究显示在神经记录中存在幂律级联,为最近的数值发现提供了理论依据。我们的分析表明,网络的层次结构如何本身导致级联大小和持续时间的幂律分布、异常指数之间的标度律以及通用函数——即使在没有自组织临界性或临界点的情况下也是如此。这种由层次结构引起的现象与产生幂律的标准动力学机制无关,但可能与之同时发生。

相似文献

1
Hierarchical networks, power laws, and neuronal avalanches.
Chaos. 2013 Mar;23(1):013135. doi: 10.1063/1.4793782.
2
Avalanches in self-organized critical neural networks: a minimal model for the neural SOC universality class.
PLoS One. 2014 Apr 17;9(4):e93090. doi: 10.1371/journal.pone.0093090. eCollection 2014.
3
Emergence of power laws in noncritical neuronal systems.
Phys Rev E. 2019 Jul;100(1-1):010401. doi: 10.1103/PhysRevE.100.010401.
4
Universal critical dynamics in high resolution neuronal avalanche data.
Phys Rev Lett. 2012 May 18;108(20):208102. doi: 10.1103/PhysRevLett.108.208102. Epub 2012 May 16.
5
The recovery of parabolic avalanches in spatially subsampled neuronal networks at criticality.
Sci Rep. 2024 Aug 20;14(1):19329. doi: 10.1038/s41598-024-70014-4.
7
Critical avalanches and subsampling in map-based neural networks coupled with noisy synapses.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Aug;88(2):024701. doi: 10.1103/PhysRevE.88.024701. Epub 2013 Aug 27.
8
Statistical analyses support power law distributions found in neuronal avalanches.
PLoS One. 2011;6(5):e19779. doi: 10.1371/journal.pone.0019779. Epub 2011 May 26.
9
Can a time varying external drive give rise to apparent criticality in neural systems?
PLoS Comput Biol. 2018 May 29;14(5):e1006081. doi: 10.1371/journal.pcbi.1006081. eCollection 2018 May.
10
Undersampled critical branching processes on small-world and random networks fail to reproduce the statistics of spike avalanches.
PLoS One. 2014 Apr 21;9(4):e94992. doi: 10.1371/journal.pone.0094992. eCollection 2014.

引用本文的文献

1
Theoretical foundations of studying criticality in the brain.
Netw Neurosci. 2022 Oct 1;6(4):1148-1185. doi: 10.1162/netn_a_00269. eCollection 2022.
2
Self-organized criticality as a framework for consciousness: A review study.
Front Psychol. 2022 Jul 15;13:911620. doi: 10.3389/fpsyg.2022.911620. eCollection 2022.
5
A Study on PHF-Tau Network Effected by Apolipoprotein E4.
Am J Alzheimers Dis Other Demen. 2020 Jan-Dec;35:1533317520971414. doi: 10.1177/1533317520971414.
6
Long-range temporal correlations in scale-free neuromorphic networks.
Netw Neurosci. 2020 Apr 1;4(2):432-447. doi: 10.1162/netn_a_00128. eCollection 2020.
8
Emergence of power laws in noncritical neuronal systems.
Phys Rev E. 2019 Jul;100(1-1):010401. doi: 10.1103/PhysRevE.100.010401.
9
Avalanche precursors of failure in hierarchical fuse networks.
Sci Rep. 2018 Aug 14;8(1):12090. doi: 10.1038/s41598-018-30539-x.
10
An algorithmic information theory of consciousness.
Neurosci Conscious. 2017 Oct 12;2017(1):nix019. doi: 10.1093/nc/nix019. eCollection 2017.

本文引用的文献

1
Universal critical dynamics in high resolution neuronal avalanche data.
Phys Rev Lett. 2012 May 18;108(20):208102. doi: 10.1103/PhysRevLett.108.208102. Epub 2012 May 16.
3
Neurobiologically realistic determinants of self-organized criticality in networks of spiking neurons.
PLoS Comput Biol. 2011 Jun;7(6):e1002038. doi: 10.1371/journal.pcbi.1002038. Epub 2011 Jun 2.
4
Can power-law scaling and neuronal avalanches arise from stochastic dynamics?
PLoS One. 2010 Feb 11;5(2):e8982. doi: 10.1371/journal.pone.0008982.
5
Patchy percolation on a hierarchical network with small-world bonds.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Oct;80(4 Pt 1):041115. doi: 10.1103/PhysRevE.80.041115. Epub 2009 Oct 13.
6
Spontaneous cortical activity in awake monkeys composed of neuronal avalanches.
Proc Natl Acad Sci U S A. 2009 Sep 15;106(37):15921-6. doi: 10.1073/pnas.0904089106. Epub 2009 Aug 26.
7
Generic aspects of complexity in brain imaging data and other biological systems.
Neuroimage. 2009 Sep;47(3):1125-34. doi: 10.1016/j.neuroimage.2009.05.032. Epub 2009 May 19.
8
Subsampling effects in neuronal avalanche distributions recorded in vivo.
BMC Neurosci. 2009 Apr 29;10:40. doi: 10.1186/1471-2202-10-40.
9
The evolution of hierarchical gene regulatory networks.
Nat Rev Genet. 2009 Feb;10(2):141-8. doi: 10.1038/nrg2499. Epub 2009 Jan 13.
10
The criticality hypothesis: how local cortical networks might optimize information processing.
Philos Trans A Math Phys Eng Sci. 2008 Feb 13;366(1864):329-43. doi: 10.1098/rsta.2007.2092.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验