Suppr超能文献

用于设计聚合物抗癌纳米药物的生物学原理。

Biological rationale for the design of polymeric anti-cancer nanomedicines.

机构信息

Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA.

出版信息

J Drug Target. 2013 Jan;21(1):1-26. doi: 10.3109/1061186X.2012.723213. Epub 2012 Sep 26.

Abstract

Understanding the biological features of cancer is the basis for designing efficient anti-cancer nanomedicines. On one hand, important therapeutic targets for anti-cancer nanomedicines need to be identified based on cancer biology, to address the unmet medical needs. On the other hand, the unique pathophysiological properties of cancer affect the delivery and interactions of anti-cancer nanomedicines with their therapeutic targets. This review discusses several critical cancer biological properties that challenge the currently available anti-cancer treatments, including cancer heterogeneity and cancer stem cells, the complexcity of tumor microenvironment, and the inevitable cancer metastases. In addition, the biological bases of the enhanced permeability and retention (EPR) effect and tumor-specific active targeting, as well as the physiological barriers for passive and active targeting of anti-cancer nanomedicines are covered in this review. Correspondingly, possible nanomedicine strategies to target cancer heterogeneity, cancer stem cells and metastases, to overcome the challenges related to tumor passive targeting and tumor penetration, and to improve the interactions of therapeutic payloads with the therapeutic targets are discussed. The focus is mainly on the designs of polymeric anti-cancer nanomedicines.

摘要

了解癌症的生物学特征是设计高效抗癌纳米药物的基础。一方面,需要基于癌症生物学来确定抗癌纳米药物的重要治疗靶点,以满足未满足的医疗需求。另一方面,癌症的独特病理生理特性会影响抗癌纳米药物与其治疗靶点的传递和相互作用。本综述讨论了几种挑战现有抗癌治疗方法的关键癌症生物学特性,包括癌症异质性和癌症干细胞、肿瘤微环境的复杂性以及不可避免的癌症转移。此外,本综述还涵盖了增强型通透性和保留(EPR)效应和肿瘤特异性主动靶向的生物学基础,以及被动和主动靶向抗癌纳米药物的生理屏障。相应地,讨论了针对癌症异质性、癌症干细胞和转移的可能的纳米药物策略,以克服与肿瘤被动靶向和肿瘤穿透相关的挑战,并改善治疗有效载荷与治疗靶点的相互作用。重点主要放在聚合物抗癌纳米药物的设计上。

相似文献

2
Can nanomedicines kill cancer stem cells?纳米药物能否杀死癌症干细胞?
Adv Drug Deliv Rev. 2013 Nov;65(13-14):1763-83. doi: 10.1016/j.addr.2013.09.016. Epub 2013 Oct 10.
6
DePEGylation strategies to increase cancer nanomedicine efficacy.去聚乙二醇化策略提高癌症纳米医学疗效。
Nanoscale Horiz. 2019 Mar 1;4(2):378-387. doi: 10.1039/c8nh00417j. Epub 2018 Dec 11.
7
Nanomedicine therapeutic approaches to overcome cancer drug resistance.纳米医学治疗方法克服癌症药物耐药性。
Adv Drug Deliv Rev. 2013 Nov;65(13-14):1866-79. doi: 10.1016/j.addr.2013.09.019. Epub 2013 Oct 10.
8
Combining Nanomedicine and Immunotherapy.纳米医学与免疫疗法的联合应用。
Acc Chem Res. 2019 Jun 18;52(6):1543-1554. doi: 10.1021/acs.accounts.9b00148. Epub 2019 May 23.
10
Extravasation of polymeric nanomedicines across tumor vasculature.高分子纳米药物穿过肿瘤血管的外渗。
Adv Drug Deliv Rev. 2011 Jul 18;63(8):623-39. doi: 10.1016/j.addr.2010.11.005. Epub 2010 Dec 6.

引用本文的文献

2
Mesenchymal stem cells as therapeutic vehicles for glioma.间充质干细胞作为胶质瘤的治疗载体
Cancer Gene Ther. 2024 Sep;31(9):1306-1314. doi: 10.1038/s41417-024-00775-7. Epub 2024 Apr 23.
6
Polymer nanomedicines.聚合物纳米药物。
Adv Drug Deliv Rev. 2020;156:40-64. doi: 10.1016/j.addr.2020.07.020. Epub 2020 Jul 28.
10
Tumor targeting via EPR: Strategies to enhance patient responses.通过 EPR 进行肿瘤靶向:增强患者反应的策略。
Adv Drug Deliv Rev. 2018 May;130:17-38. doi: 10.1016/j.addr.2018.07.007. Epub 2018 Jul 19.

本文引用的文献

2
Analysis on the current status of targeted drug delivery to tumors.肿瘤靶向药物递送的现状分析。
J Control Release. 2012 Dec 10;164(2):108-14. doi: 10.1016/j.jconrel.2012.07.010. Epub 2012 Jul 16.
9
Tumor microenvironment: a main actor in the metastasis process.肿瘤微环境:转移过程中的主要参与者。
Clin Exp Metastasis. 2012 Apr;29(4):381-95. doi: 10.1007/s10585-012-9457-5. Epub 2012 Feb 10.
10
Treating metastatic cancer with nanotechnology.用纳米技术治疗转移性癌症。
Nat Rev Cancer. 2011 Dec 23;12(1):39-50. doi: 10.1038/nrc3180.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验