Suppr超能文献

预测医院内的临床恶化:结局选择的影响。

Predicting clinical deterioration in the hospital: the impact of outcome selection.

机构信息

Section of Pulmonary and Critical Care, University of Chicago, Chicago, USA.

出版信息

Resuscitation. 2013 May;84(5):564-8. doi: 10.1016/j.resuscitation.2012.09.024. Epub 2012 Sep 25.

Abstract

BACKGROUND

Clinical deterioration of ward patients can result in intensive care unit (ICU) transfer, cardiac arrest (CA), and/or death. These different outcomes have been used to develop and test track and trigger systems, but the impact of outcome selection on the performance of prediction algorithms is unknown.

METHODS

Patients hospitalized on the wards between November 2008 and August 2011 at an academic hospital were included in the study. Ward vital signs and demographic characteristics were compared across outcomes. The dataset was then split into derivation and validation cohorts. Logistic regression was used to derive four models (one per outcome and a combined outcome) for predicting each event within 24h of a vital sign set. The models were compared in the validation cohort using the area under the receiver operating characteristic curve (AUC).

RESULTS

A total of 59,643 patients were included in the study (including 109 ward CAs, 291 deaths, and 2638 ICU transfers). Most mean vital signs within 24h of the events differed statistically, with those before death being the most deranged. Validation model AUCs were highest for predicting mortality (range 0.73-0.82), followed by CA (range 0.74-0.76), and lowest for predicting ICU transfer (range 0.68-0.71).

CONCLUSIONS

Despite differences in vital signs before CA, ICU transfer, and death, the different models performed similarly for detecting each outcome. Mortality was the easiest outcome to predict and ICU transfer the most difficult. Studies should be interpreted with these differences in mind.

摘要

背景

病房患者的病情恶化可能导致转入重症监护病房(ICU)、心脏骤停(CA)和/或死亡。这些不同的结果被用于开发和测试跟踪和触发系统,但结果选择对预测算法性能的影响尚不清楚。

方法

研究纳入了 2008 年 11 月至 2011 年 8 月期间在一所学术医院住院的病房患者。对不同结局的病房生命体征和人口统计学特征进行了比较。然后将数据集分为推导和验证队列。使用逻辑回归推导了四个模型(每个结局一个,综合结局一个),用于预测生命体征集后 24 小时内的每个事件。使用接收器工作特征曲线下的面积(AUC)在验证队列中比较模型。

结果

共纳入 59643 例患者(包括 109 例病房 CA、291 例死亡和 2638 例 ICU 转科)。大多数在事件发生后 24 小时内的平均生命体征存在统计学差异,其中死亡前的生命体征最为紊乱。预测死亡率的验证模型 AUC 最高(范围 0.73-0.82),其次是 CA(范围 0.74-0.76),预测 ICU 转科的最低(范围 0.68-0.71)。

结论

尽管 CA、ICU 转科和死亡前的生命体征存在差异,但不同的模型在检测每个结局方面表现相似。死亡率是最容易预测的结局,而 ICU 转科是最难预测的。在解释研究结果时应考虑到这些差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验