Suppr超能文献

利用与活动相关的行为特征实现更有效的自动压力检测。

Using activity-related behavioural features towards more effective automatic stress detection.

机构信息

Informatics and Telematics Institute, Centre for Research and Technology Hellas, Thermi, Thessaloniki, Greece.

出版信息

PLoS One. 2012;7(9):e43571. doi: 10.1371/journal.pone.0043571. Epub 2012 Sep 19.

Abstract

This paper introduces activity-related behavioural features that can be automatically extracted from a computer system, with the aim to increase the effectiveness of automatic stress detection. The proposed features are based on processing of appropriate video and accelerometer recordings taken from the monitored subjects. For the purposes of the present study, an experiment was conducted that utilized a stress-induction protocol based on the stroop colour word test. Video, accelerometer and biosignal (Electrocardiogram and Galvanic Skin Response) recordings were collected from nineteen participants. Then, an explorative study was conducted by following a methodology mainly based on spatiotemporal descriptors (Motion History Images) that are extracted from video sequences. A large set of activity-related behavioural features, potentially useful for automatic stress detection, were proposed and examined. Experimental evaluation showed that several of these behavioural features significantly correlate to self-reported stress. Moreover, it was found that the use of the proposed features can significantly enhance the performance of typical automatic stress detection systems, commonly based on biosignal processing.

摘要

本文介绍了可以从计算机系统中自动提取的与活动相关的行为特征,旨在提高自动压力检测的有效性。所提出的特征基于对从被监测对象获取的适当视频和加速度计记录的处理。为此目的,进行了一项实验,该实验利用基于斯特鲁普颜色词测试的应激诱导方案。从十九名参与者那里收集了视频、加速度计和生物信号(心电图和皮肤电反应)记录。然后,通过主要基于从视频序列中提取的时空描述符(运动历史图像)的方法进行了探索性研究。提出并检查了一组可能对自动压力检测有用的大量与活动相关的行为特征。实验评估表明,这些行为特征中的几个与自我报告的压力显著相关。此外,还发现使用所提出的特征可以显著提高基于生物信号处理的典型自动压力检测系统的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/29e9/3446965/63909bde9a8c/pone.0043571.g001.jpg

相似文献

引用本文的文献

5
Ergonomic human-robot collaboration in industry: A review.工业中的人机工程学人机协作:综述。
Front Robot AI. 2023 Jan 3;9:813907. doi: 10.3389/frobt.2022.813907. eCollection 2022.

本文引用的文献

2
Psychophysiological signals associated with affective states.与情感状态相关的心理生理信号。
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:3563-6. doi: 10.1109/IEMBS.2010.5627465.
3
Real-time quantification of resting tremor in the Parkinson's disease.帕金森病静止性震颤的实时定量分析
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:1306-9. doi: 10.1109/IEMBS.2009.5332580.
4
Discriminating stress from cognitive load using a wearable EDA device.使用可穿戴式皮肤电活动(EDA)设备区分压力与认知负荷。
IEEE Trans Inf Technol Biomed. 2010 Mar;14(2):410-7. doi: 10.1109/TITB.2009.2036164. Epub 2009 Nov 10.
5
Considerations for emotion-aware consumer products.考虑情感感知型消费品。
Appl Ergon. 2009 Nov;40(6):1055-64. doi: 10.1016/j.apergo.2009.04.012. Epub 2009 Jun 9.
8
Emotion recognition based on physiological changes in music listening.基于音乐聆听中生理变化的情绪识别。
IEEE Trans Pattern Anal Mach Intell. 2008 Dec;30(12):2067-83. doi: 10.1109/TPAMI.2008.26.
9
Psychological stress and disease.心理压力与疾病。
JAMA. 2007 Oct 10;298(14):1685-7. doi: 10.1001/jama.298.14.1685.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验