Carver Center for Genomics, Department of Biology, University of Iowa, Iowa City, IA 52242, USA.
Fungal Genet Biol. 2013 Jun;55:22-31. doi: 10.1016/j.fgb.2013.03.004. Epub 2013 Apr 10.
The oxidative enzymatic machinery for degradation of organic substrates in Agaricus bisporus (Ab) is at the core of the carbon recycling mechanisms in this fungus. To date, 156 genes have been tentatively identified as part of this oxidative enzymatic machinery, which includes 26 peroxidase encoding genes, nine copper radical oxidase [including three putative glyoxal oxidase-encoding genes (GLXs)], 12 laccases sensu stricto and 109 cytochrome P450 monooxygenases. Comparative analyses of these enzymes in Ab with those of the white-rot fungus, Phanerochaete chrysosporium, the brown-rot fungus, Postia placenta, the coprophilic litter fungus, Coprinopsis cinerea and the ectomychorizal fungus, Laccaria bicolor, revealed enzyme diversity consistent with adaptation to substrates rich in humic substances and partially degraded plant material. For instance, relative to wood decay fungi, Ab cytochrome P450 genes were less numerous (109 gene models), distributed among distinctive families, and lacked extensive duplication and clustering. Viewed together with P450 transcript accumulation patterns in three tested growth conditions, these observations were consistent with the unique Ab lifestyle. Based on tandem gene arrangements, a certain degree of gene duplication seems to have occurred in this fungus in the copper radical oxidase (CRO) and the laccase gene families. In Ab, high transcript levels and regulation of the heme-thiolate peroxidases, two manganese peroxidases and the three GLX-like genes are likely in response to complex natural substrates, including lignocellulose and its derivatives, thereby suggesting an important role in lignin degradation. On the other hand, the expression patterns of the related CROs suggest a developmental role in this fungus. Based on these observations, a brief comparative genomic overview of the Ab oxidative enzyme machinery is presented.
双孢蘑菇(Agaricus bisporus)中有机底物降解的氧化酶机制是该真菌碳循环机制的核心。迄今为止,已有 156 个基因被初步鉴定为该氧化酶机制的一部分,其中包括 26 个过氧化物酶编码基因、9 个铜自由基氧化酶[包括 3 个推测的乙二醛氧化酶编码基因(GLXs)]、12 个漆酶和 109 个细胞色素 P450 单加氧酶。将这些酶在 Ab 中的比较分析与白腐菌 Phanerochaete chrysosporium、褐腐菌 Postia placenta、腐生 litter 真菌 Coprinopsis cinerea 和外生菌根真菌 Laccaria bicolor 中的进行比较,发现酶的多样性与适应富含腐殖质和部分降解植物物质的底物相一致。例如,与木质素降解真菌相比,Ab 细胞色素 P450 基因数量较少(109 个基因模型),分布在不同的家族中,并且缺乏广泛的重复和聚类。结合三种测试生长条件下 P450 转录积累模式的观察结果,这些观察结果与 Ab 独特的生活方式一致。基于串联基因排列,铜自由基氧化酶(CRO)和漆酶基因家族中似乎发生了一定程度的基因复制。在 Ab 中,高水平的转录和调节血红素硫醇过氧化物酶、两种锰过氧化物酶和三个 GLX 样基因可能是对复杂天然底物的反应,包括木质纤维素及其衍生物,从而表明它们在木质素降解中起着重要作用。另一方面,相关 CRO 的表达模式表明其在真菌发育中具有重要作用。基于这些观察结果,对 Ab 氧化酶机制进行了简要的比较基因组概述。