Suppr超能文献

用于虚拟筛选中活性化合物识别的基于接触的配体聚类方法。

Contact-based ligand-clustering approach for the identification of active compounds in virtual screening.

作者信息

Mantsyzov Alexey B, Bouvier Guillaume, Evrard-Todeschi Nathalie, Bertho Gildas

机构信息

Université Paris Descartes, Sorbonne, Paris, France.

出版信息

Adv Appl Bioinform Chem. 2012;5:61-79. doi: 10.2147/AABC.S30881. Epub 2012 Sep 6.

Abstract

Evaluation of docking results is one of the most important problems for virtual screening and in silico drug design. Modern approaches for the identification of active compounds in a large data set of docked molecules use energy scoring functions. One of the general and most significant limitations of these methods relates to inaccurate binding energy estimation, which results in false scoring of docked compounds. Automatic analysis of poses using self-organizing maps (AuPosSOM) represents an alternative approach for the evaluation of docking results based on the clustering of compounds by the similarity of their contacts with the receptor. A scoring function was developed for the identification of the active compounds in the AuPosSOM clustered dataset. In addition, the AuPosSOM efficiency for the clustering of compounds and the identification of key contacts considered as important for its activity, were also improved. Benchmark tests for several targets revealed that together with the developed scoring function, AuPosSOM represents a good alternative to the energy-based scoring functions for the evaluation of docking results.

摘要

对接结果评估是虚拟筛选和计算机辅助药物设计中最重要的问题之一。在对接分子的大数据集中识别活性化合物的现代方法使用能量评分函数。这些方法的一个普遍且最显著的局限性与结合能估计不准确有关,这导致对接化合物的评分错误。使用自组织映射进行构象自动分析(AuPosSOM)代表了一种基于化合物与受体接触相似性对对接结果进行评估的替代方法。开发了一种评分函数,用于在AuPosSOM聚类数据集中识别活性化合物。此外,AuPosSOM在化合物聚类和识别被认为对其活性很重要的关键接触方面的效率也得到了提高。对几个靶点的基准测试表明,与开发的评分函数一起,AuPosSOM是评估对接结果的基于能量的评分函数的一个很好的替代方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验