Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA.
Nat Methods. 2012 Nov;9(11):1113-9. doi: 10.1038/nmeth.2210. Epub 2012 Oct 14.
We report a technique for generating controllable, time-varying and localizable forces on arrays of cells in a massively parallel fashion. To achieve this, we grow magnetic nanoparticle-dosed cells in defined patterns on micromagnetic substrates. By manipulating and coalescing nanoparticles within cells, we apply localized nanoparticle-mediated forces approaching cellular yield tensions on the cortex of HeLa cells. We observed highly coordinated responses in cellular behavior, including the p21-activated kinase-dependent generation of active, leading edge-type filopodia and biasing of the metaphase plate during mitosis. The large sample size and rapid sample generation inherent to this approach allow the analysis of cells at an unprecedented rate: in a single experiment, potentially tens of thousands of cells can be stimulated for high statistical accuracy in measurements. This technique shows promise as a tool for both cell analysis and control.
我们报告了一种在细胞阵列上以大规模并行方式产生可控、时变和局部化力的技术。为此,我们在微磁体衬底上以特定模式培养载有磁性纳米颗粒的细胞。通过在细胞内操纵和融合纳米颗粒,我们施加了局部纳米颗粒介导的力,接近 HeLa 细胞皮质的细胞屈服张力。我们观察到细胞行为的高度协调响应,包括 p21 激活激酶依赖性的活性前缘型丝状伪足的产生以及有丝分裂期间中期板的偏置。这种方法固有的大样本量和快速样本生成允许以前所未有的速度分析细胞:在单个实验中,可能有成千上万的细胞可以进行刺激,以获得高统计精度的测量。该技术有望成为细胞分析和控制的工具。