Instituto Leônidas e Maria Deane - Fiocruz Amazônia, Manaus, Amazonas, Brazil.
PLoS Negl Trop Dis. 2012;6(10):e1846. doi: 10.1371/journal.pntd.0001846. Epub 2012 Oct 11.
Arboviral diseases are major global public health threats. Yet, our understanding of infection risk factors is, with a few exceptions, considerably limited. A crucial shortcoming is the widespread use of analytical methods generally not suited for observational data--particularly null hypothesis-testing (NHT) and step-wise regression (SWR). Using Mayaro virus (MAYV) as a case study, here we compare information theory-based multimodel inference (MMI) with conventional analyses for arboviral infection risk factor assessment.
METHODOLOGY/PRINCIPAL FINDINGS: A cross-sectional survey of anti-MAYV antibodies revealed 44% prevalence (n = 270 subjects) in a central Amazon rural settlement. NHT suggested that residents of village-like household clusters and those using closed toilet/latrines were at higher risk, while living in non-village-like areas, using bednets, and owning fowl, pigs or dogs were protective. The "minimum adequate" SWR model retained only residence area and bednet use. Using MMI, we identified relevant covariates, quantified their relative importance, and estimated effect-sizes (β ± SE) on which to base inference. Residence area (β(Village) = 2.93 ± 0.41; β(Upland) = -0.56 ± 0.33, β(Riverbanks) = -2.37 ± 0.55) and bednet use (β = -0.95 ± 0.28) were the most important factors, followed by crop-plot ownership (β = 0.39 ± 0.22) and regular use of a closed toilet/latrine (β = 0.19 ± 0.13); domestic animals had insignificant protective effects and were relatively unimportant. The SWR model ranked fifth among the 128 models in the final MMI set.
CONCLUSIONS/SIGNIFICANCE: Our analyses illustrate how MMI can enhance inference on infection risk factors when compared with NHT or SWR. MMI indicates that forest crop-plot workers are likely exposed to typical MAYV cycles maintained by diurnal, forest dwelling vectors; however, MAYV might also be circulating in nocturnal, domestic-peridomestic cycles in village-like areas. This suggests either a vector shift (synanthropic mosquitoes vectoring MAYV) or a habitat/habits shift (classical MAYV vectors adapting to densely populated landscapes and nocturnal biting); any such ecological/adaptive novelty could increase the likelihood of MAYV emergence in Amazonia.
虫媒病毒病是重大的全球公共卫生威胁。然而,我们对感染风险因素的了解除了少数例外,还相当有限。一个关键的缺点是广泛使用一般不适用于观察性数据的分析方法——特别是零假设检验(NHT)和逐步回归(SWR)。以马亚罗病毒(MAYV)为例,我们在这里比较了基于信息理论的多模型推断(MMI)与传统分析方法在虫媒病毒感染风险因素评估中的应用。
方法/主要发现:一项针对抗 MAYV 抗体的横断面调查显示,在亚马逊中部一个农村定居点,有 44%(n=270 名受试者)的人呈阳性。NHT 表明,居住在类似村庄的家庭聚居区的人和使用封闭厕所/便池的人感染风险较高,而居住在非类似村庄地区、使用蚊帐和拥有家禽、猪或狗的人则具有保护作用。“最小充分”SWR 模型仅保留了居住区域和使用蚊帐两个因素。使用 MMI,我们确定了相关协变量,量化了它们的相对重要性,并估计了基于推断的效应大小(β±SE)。居住区域(β(村庄)=2.93±0.41;β(高地)=-0.56±0.33,β(河岸)=-2.37±0.55)和蚊帐使用(β=-0.95±0.28)是最重要的因素,其次是作物种植地所有权(β=0.39±0.22)和定期使用封闭厕所/便池(β=0.19±0.13);家养动物的保护作用微不足道,相对不重要。在最终 MMI 集合中,SWR 模型排名第 128 位。
结论/意义:我们的分析说明了 MMI 如何在与 NHT 或 SWR 相比时增强对感染风险因素的推断。MMI 表明,森林作物种植工人可能接触到由昼行性、森林栖居的媒介传播的典型 MAYV 循环;然而,MAYV 也可能在类似村庄地区的夜行性、家庭周围循环中传播。这表明存在媒介转移(嗜人蚊传播 MAYV)或栖息地/习惯转移(经典 MAYV 媒介适应人口密集的景观和夜行性叮咬);任何这种生态/适应性的新变化都可能增加 MAYV 在亚马逊地区出现的可能性。