Suppr超能文献

用于评估临终关怀患者生存预后准确性的 Cox 比例风险模型的一种灵活替代方法。

A flexible alternative to the Cox proportional hazards model for assessing the prognostic accuracy of hospice patient survival.

机构信息

Center for Evidence Based Medicine and Health Outcomes Research, University of South Florida, Tampa, Florida, USA.

出版信息

PLoS One. 2012;7(10):e47804. doi: 10.1371/journal.pone.0047804. Epub 2012 Oct 17.

Abstract

Prognostic models are often used to estimate the length of patient survival. The Cox proportional hazards model has traditionally been applied to assess the accuracy of prognostic models. However, it may be suboptimal due to the inflexibility to model the baseline survival function and when the proportional hazards assumption is violated. The aim of this study was to use internal validation to compare the predictive power of a flexible Royston-Parmar family of survival functions with the Cox proportional hazards model. We applied the Palliative Performance Scale on a dataset of 590 hospice patients at the time of hospice admission. The retrospective data were obtained from the Lifepath Hospice and Palliative Care center in Hillsborough County, Florida, USA. The criteria used to evaluate and compare the models' predictive performance were the explained variation statistic R(2), scaled Brier score, and the discrimination slope. The explained variation statistic demonstrated that overall the Royston-Parmar family of survival functions provided a better fit (R(2) =0.298; 95% CI: 0.236-0.358) than the Cox model (R(2) =0.156; 95% CI: 0.111-0.203). The scaled Brier scores and discrimination slopes were consistently higher under the Royston-Parmar model. Researchers involved in prognosticating patient survival are encouraged to consider the Royston-Parmar model as an alternative to Cox.

摘要

预后模型常用于评估患者的生存时间。传统上,Cox 比例风险模型用于评估预后模型的准确性。然而,由于该模型在构建基础生存函数和违反比例风险假设时的灵活性不足,其应用可能并不理想。本研究旨在通过内部验证比较灵活的 Royston-Parmar 生存函数家族与 Cox 比例风险模型的预测能力。我们在临终关怀入院时对 590 名临终关怀患者的数据集应用了姑息治疗表现量表。回顾性数据来自美国佛罗里达州希尔斯伯勒县的 Lifepath 临终关怀和姑息治疗中心。用于评估和比较模型预测性能的标准是解释方差统计量 R(2)、缩放 Brier 评分和区分斜率。解释方差统计量表明,总体而言,Royston-Parmar 生存函数家族提供了更好的拟合(R(2)=0.298;95%CI:0.236-0.358),优于 Cox 模型(R(2)=0.156;95%CI:0.111-0.203)。Royston-Parmar 模型的缩放 Brier 评分和区分斜率始终更高。鼓励从事患者生存预后预测的研究人员考虑将 Royston-Parmar 模型作为 Cox 的替代方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23bf/3474724/90eb704a15c5/pone.0047804.g001.jpg

相似文献

3
Survival analysis of irish amyotrophic lateral sclerosis patients diagnosed from 1995-2010.
PLoS One. 2013 Sep 30;8(9):e74733. doi: 10.1371/journal.pone.0074733. eCollection 2013.
4
The current application of the Royston-Parmar model for prognostic modeling in health research: a scoping review.
Diagn Progn Res. 2018 Feb 7;2:4. doi: 10.1186/s41512-018-0026-5. eCollection 2018.
6
Predicting survival with the Palliative Performance Scale in a minority-serving hospice and palliative care program.
J Pain Symptom Manage. 2009 Apr;37(4):642-8. doi: 10.1016/j.jpainsymman.2008.03.023. Epub 2008 Sep 26.
7
Use of the Palliative Performance Scale to estimate survival among home hospice patients with heart failure.
ESC Heart Fail. 2019 Apr;6(2):371-378. doi: 10.1002/ehf2.12398. Epub 2019 Mar 5.
10
Bayesian one-step IPD network meta-analysis of time-to-event data using Royston-Parmar models.
Res Synth Methods. 2017 Dec;8(4):451-464. doi: 10.1002/jrsm.1253. Epub 2017 Jul 25.

引用本文的文献

1
Recurrent emergent hernia repairs: who is at risk?
Surg Endosc. 2025 Jun 19. doi: 10.1007/s00464-025-11914-y.
4
Performance evaluation of survival regression models in analysing Swedish dental implant complication data with frailty.
PLoS One. 2021 Jan 7;16(1):e0245111. doi: 10.1371/journal.pone.0245111. eCollection 2021.
7
The current application of the Royston-Parmar model for prognostic modeling in health research: a scoping review.
Diagn Progn Res. 2018 Feb 7;2:4. doi: 10.1186/s41512-018-0026-5. eCollection 2018.
9
Complete hazard ranking to analyze right-censored data: An ALS survival study.
PLoS Comput Biol. 2017 Dec 18;13(12):e1005887. doi: 10.1371/journal.pcbi.1005887. eCollection 2017 Dec.
10
Hemodialysis versus Peritoneal Dialysis: A Comparison of Survival Outcomes in South-East Asian Patients with End-Stage Renal Disease.
PLoS One. 2015 Oct 7;10(10):e0140195. doi: 10.1371/journal.pone.0140195. eCollection 2015.

本文引用的文献

1
Prediction models: revolutionary in principle, but do they do more good than harm?
J Clin Oncol. 2011 Aug 1;29(22):2951-2. doi: 10.1200/JCO.2011.36.1329. Epub 2011 Jun 20.
2
Reporting performance of prognostic models in cancer: a review.
BMC Med. 2010 Mar 30;8:21. doi: 10.1186/1741-7015-8-21.
3
Assessing the performance of prediction models: a framework for traditional and novel measures.
Epidemiology. 2010 Jan;21(1):128-38. doi: 10.1097/EDE.0b013e3181c30fb2.
5
Prognosis and prognostic research: validating a prognostic model.
BMJ. 2009 May 28;338:b605. doi: 10.1136/bmj.b605.
6
Prognosis and prognostic research: Developing a prognostic model.
BMJ. 2009 Mar 31;338:b604. doi: 10.1136/bmj.b604.
7
Prognostic models: a methodological framework and review of models for breast cancer.
Cancer Invest. 2009 Mar;27(3):235-43. doi: 10.1080/07357900802572110.
8
Use of the Palliative Performance Scale (PPS) for end-of-life prognostication in a palliative medicine consultation service.
J Pain Symptom Manage. 2009 Jun;37(6):965-72. doi: 10.1016/j.jpainsymman.2008.08.003. Epub 2009 Feb 20.
10
Using the Palliative Performance Scale to provide meaningful survival estimates.
J Pain Symptom Manage. 2009 Jul;38(1):134-44. doi: 10.1016/j.jpainsymman.2008.05.017. Epub 2009 Jan 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验